--- license: mit base_model: facebook/bart-large-cnn tags: - summarization - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-finetuned-scientific-articles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers config: pubmed split: train args: pubmed metrics: - name: Rouge1 type: rouge value: 33.8477 --- # bart-large-cnn-finetuned-scientific-articles This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.6456 - Rouge1: 33.8477 - Rouge2: 11.8866 - Rougel: 20.1038 - Rougelsum: 30.5011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3695 | 1.0 | 56 | 2.8464 | 32.1056 | 10.3835 | 18.7541 | 29.2623 | | 2.7639 | 2.0 | 112 | 2.6667 | 31.2657 | 10.758 | 18.9862 | 28.3279 | | 2.5169 | 3.0 | 168 | 2.6219 | 33.226 | 11.4766 | 19.5923 | 30.0664 | | 2.2985 | 4.0 | 224 | 2.6029 | 32.8562 | 11.5606 | 19.8616 | 29.7606 | | 2.0851 | 5.0 | 280 | 2.6456 | 33.8477 | 11.8866 | 20.1038 | 30.5011 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1