File size: 2,161 Bytes
9f72156 e11edc9 9f72156 e90c3b9 9f72156 e90c3b9 c1fca37 e90c3b9 9f72156 4e26629 9f72156 e90c3b9 9f72156 4e26629 9f72156 e90c3b9 4e26629 e90c3b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-amazon-shoe-reviews
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-amazon-shoe-reviews
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9526
- Accuracy: 0.5793
- F1: [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605]
- Precision: [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ]
- Recall: [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:|
| 0.9618 | 1.0 | 2813 | 0.9526 | 0.5793 | [0.63065766 0.46287992 0.50875894 0.55936944 0.73581605] | [0.62955567 0.46589769 0.49282983 0.58949625 0.7198044 ] | [0.63176353 0.45990099 0.52575217 0.53217223 0.75255624] |
### Framework versions
- Transformers 4.28.1
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|