--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_BIOMAT_NER_1000 results: [] --- # BERT_BIOMAT_NER_1000 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3920 - Precision: 0.9495 - Recall: 0.9444 - F1: 0.9470 - Accuracy: 0.9380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 211 | 0.2669 | 0.9407 | 0.9352 | 0.9380 | 0.9275 | | No log | 2.0 | 422 | 0.2809 | 0.9457 | 0.9432 | 0.9444 | 0.9343 | | 0.2064 | 3.0 | 633 | 0.3114 | 0.9472 | 0.9454 | 0.9463 | 0.9353 | | 0.2064 | 4.0 | 844 | 0.3323 | 0.9491 | 0.9422 | 0.9456 | 0.9358 | | 0.0481 | 5.0 | 1055 | 0.3478 | 0.9493 | 0.9441 | 0.9467 | 0.9382 | | 0.0481 | 6.0 | 1266 | 0.3731 | 0.9486 | 0.9438 | 0.9462 | 0.9374 | | 0.0481 | 7.0 | 1477 | 0.3723 | 0.9491 | 0.9445 | 0.9468 | 0.9379 | | 0.0201 | 8.0 | 1688 | 0.3830 | 0.9489 | 0.9443 | 0.9466 | 0.9369 | | 0.0201 | 9.0 | 1899 | 0.3873 | 0.9503 | 0.9448 | 0.9475 | 0.9378 | | 0.0106 | 10.0 | 2110 | 0.3920 | 0.9495 | 0.9444 | 0.9470 | 0.9380 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1