--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_BIOMAT_NER3600_ST_DA results: [] --- # BERT_BIOMAT_NER3600_ST_DA This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3385 - Precision: 0.9673 - Recall: 0.9631 - F1: 0.9652 - Accuracy: 0.9636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2217 | 1.0 | 601 | 0.2356 | 0.9543 | 0.9508 | 0.9525 | 0.9472 | | 0.0692 | 2.0 | 1202 | 0.2555 | 0.9571 | 0.9529 | 0.9550 | 0.9525 | | 0.0406 | 3.0 | 1803 | 0.2416 | 0.9626 | 0.9584 | 0.9605 | 0.9584 | | 0.0257 | 4.0 | 2404 | 0.2984 | 0.9644 | 0.9594 | 0.9619 | 0.9598 | | 0.011 | 5.0 | 3005 | 0.2851 | 0.9663 | 0.9622 | 0.9643 | 0.9627 | | 0.0079 | 6.0 | 3606 | 0.3022 | 0.9665 | 0.9622 | 0.9644 | 0.9627 | | 0.0056 | 7.0 | 4207 | 0.3214 | 0.9668 | 0.9619 | 0.9644 | 0.9625 | | 0.0043 | 8.0 | 4808 | 0.3227 | 0.9673 | 0.9631 | 0.9652 | 0.9636 | | 0.0036 | 9.0 | 5409 | 0.3405 | 0.9672 | 0.9629 | 0.9650 | 0.9634 | | 0.0025 | 10.0 | 6010 | 0.3385 | 0.9673 | 0.9631 | 0.9652 | 0.9636 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1