juanpablomesa commited on
Commit
8a2a3f1
1 Parent(s): 11d30a5

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:4012
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: 'Extensive messenger RNA editing generates transcript and protein
34
+ diversity in genes involved in neural excitability, as previously described, as
35
+ well as in genes participating in a broad range of other cellular functions. '
36
+ sentences:
37
+ - Do cephalopods use RNA editing less frequently than other species?
38
+ - GV1001 vaccine targets which enzyme?
39
+ - Which event results in the acetylation of S6K1?
40
+ - source_sentence: Yes, exposure to household furry pets influences the gut microbiota
41
+ of infants.
42
+ sentences:
43
+ - Can pets affect infant microbiomed?
44
+ - What is the mode of action of Thiazovivin?
45
+ - What are the effects of CAMK4 inhibition?
46
+ - source_sentence: "In children with heart failure evidence of the effect of enalapril\
47
+ \ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
48
+ \ children with cardiac failure secondary to congenital heart malformations before\
49
+ \ and after cardiac surgery, impaired ventricular function , valvar regurgitation,\
50
+ \ congestive cardiomyopathy, , arterial hypertension, life-threatening arrhythmias\
51
+ \ coexisting with circulatory insufficiency. \nACE inhibitors have shown a transient\
52
+ \ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
53
+ \ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
54
+ \ studies."
55
+ sentences:
56
+ - Which receptors can be evaluated with the [18F]altanserin?
57
+ - In what proportion of children with heart failure has Enalapril been shown to
58
+ be safe and effective?
59
+ - Which major signaling pathways are regulated by RIP1?
60
+ - source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
61
+ a novel type of chromatin condensation involving alterations of linker histone
62
+ H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
63
+ but their mechanism of action remains unclear.
64
+ sentences:
65
+ - What is the relationship between the X chromosome and a neutrophil drumstick?
66
+ - Which microRNAs are involved in exercise adaptation?
67
+ - How are SAHFS created?
68
+ - source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
69
+ circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
70
+ are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
71
+ deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
72
+ of all three clusters (tricluster deletion) led to a severe axonal arborization
73
+ defect and loss of self-avoidance.
74
+ sentences:
75
+ - What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
76
+ in mice?
77
+ - what is the role of MEF-2 in cardiomyocyte differentiation?
78
+ - How many periods of regulatory innovation led to the evolution of vertebrates?
79
+ model-index:
80
+ - name: BGE small finetuned BIOASQ
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: BAAI/bge small en v1.5
87
+ type: BAAI/bge-small-en-v1.5
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.8415841584158416
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.925035360678925
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.942008486562942
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.958981612446959
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.8415841584158416
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.30834512022630833
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.18840169731258838
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.09589816124469587
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.8415841584158416
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.925035360678925
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.942008486562942
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.958981612446959
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.9047357964584107
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.886919916481444
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.8877807671526188
133
+ name: Cosine Map@100
134
+ ---
135
+
136
+ # BGE small finetuned BIOASQ
137
+
138
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
139
+
140
+ ## Model Details
141
+
142
+ ### Model Description
143
+ - **Model Type:** Sentence Transformer
144
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
145
+ - **Maximum Sequence Length:** 512 tokens
146
+ - **Output Dimensionality:** 384 tokens
147
+ - **Similarity Function:** Cosine Similarity
148
+ <!-- - **Training Dataset:** Unknown -->
149
+ - **Language:** en
150
+ - **License:** apache-2.0
151
+
152
+ ### Model Sources
153
+
154
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
155
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
156
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
157
+
158
+ ### Full Model Architecture
159
+
160
+ ```
161
+ SentenceTransformer(
162
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
163
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
164
+ (2): Normalize()
165
+ )
166
+ ```
167
+
168
+ ## Usage
169
+
170
+ ### Direct Usage (Sentence Transformers)
171
+
172
+ First install the Sentence Transformers library:
173
+
174
+ ```bash
175
+ pip install -U sentence-transformers
176
+ ```
177
+
178
+ Then you can load this model and run inference.
179
+ ```python
180
+ from sentence_transformers import SentenceTransformer
181
+
182
+ # Download from the 🤗 Hub
183
+ model = SentenceTransformer("juanpablomesa/bge-small-bioasq-1epochs-batch32")
184
+ # Run inference
185
+ sentences = [
186
+ 'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
187
+ 'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
188
+ 'How many periods of regulatory innovation led to the evolution of vertebrates?',
189
+ ]
190
+ embeddings = model.encode(sentences)
191
+ print(embeddings.shape)
192
+ # [3, 384]
193
+
194
+ # Get the similarity scores for the embeddings
195
+ similarities = model.similarity(embeddings, embeddings)
196
+ print(similarities.shape)
197
+ # [3, 3]
198
+ ```
199
+
200
+ <!--
201
+ ### Direct Usage (Transformers)
202
+
203
+ <details><summary>Click to see the direct usage in Transformers</summary>
204
+
205
+ </details>
206
+ -->
207
+
208
+ <!--
209
+ ### Downstream Usage (Sentence Transformers)
210
+
211
+ You can finetune this model on your own dataset.
212
+
213
+ <details><summary>Click to expand</summary>
214
+
215
+ </details>
216
+ -->
217
+
218
+ <!--
219
+ ### Out-of-Scope Use
220
+
221
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
222
+ -->
223
+
224
+ ## Evaluation
225
+
226
+ ### Metrics
227
+
228
+ #### Information Retrieval
229
+ * Dataset: `BAAI/bge-small-en-v1.5`
230
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
231
+
232
+ | Metric | Value |
233
+ |:--------------------|:-----------|
234
+ | cosine_accuracy@1 | 0.8416 |
235
+ | cosine_accuracy@3 | 0.925 |
236
+ | cosine_accuracy@5 | 0.942 |
237
+ | cosine_accuracy@10 | 0.959 |
238
+ | cosine_precision@1 | 0.8416 |
239
+ | cosine_precision@3 | 0.3083 |
240
+ | cosine_precision@5 | 0.1884 |
241
+ | cosine_precision@10 | 0.0959 |
242
+ | cosine_recall@1 | 0.8416 |
243
+ | cosine_recall@3 | 0.925 |
244
+ | cosine_recall@5 | 0.942 |
245
+ | cosine_recall@10 | 0.959 |
246
+ | cosine_ndcg@10 | 0.9047 |
247
+ | cosine_mrr@10 | 0.8869 |
248
+ | **cosine_map@100** | **0.8878** |
249
+
250
+ <!--
251
+ ## Bias, Risks and Limitations
252
+
253
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
254
+ -->
255
+
256
+ <!--
257
+ ### Recommendations
258
+
259
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
260
+ -->
261
+
262
+ ## Training Details
263
+
264
+ ### Training Dataset
265
+
266
+ #### Unnamed Dataset
267
+
268
+
269
+ * Size: 4,012 training samples
270
+ * Columns: <code>positive</code> and <code>anchor</code>
271
+ * Approximate statistics based on the first 1000 samples:
272
+ | | positive | anchor |
273
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
274
+ | type | string | string |
275
+ | details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
276
+ * Samples:
277
+ | positive | anchor |
278
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
279
+ | <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code> | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
280
+ | <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code> | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code> |
281
+ | <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code> |
282
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
283
+ ```json
284
+ {
285
+ "scale": 20.0,
286
+ "similarity_fct": "cos_sim"
287
+ }
288
+ ```
289
+
290
+ ### Training Hyperparameters
291
+ #### Non-Default Hyperparameters
292
+
293
+ - `eval_strategy`: steps
294
+ - `per_device_train_batch_size`: 32
295
+ - `per_device_eval_batch_size`: 16
296
+ - `learning_rate`: 2e-05
297
+ - `num_train_epochs`: 1
298
+ - `warmup_ratio`: 0.1
299
+ - `fp16`: True
300
+ - `batch_sampler`: no_duplicates
301
+
302
+ #### All Hyperparameters
303
+ <details><summary>Click to expand</summary>
304
+
305
+ - `overwrite_output_dir`: False
306
+ - `do_predict`: False
307
+ - `eval_strategy`: steps
308
+ - `prediction_loss_only`: True
309
+ - `per_device_train_batch_size`: 32
310
+ - `per_device_eval_batch_size`: 16
311
+ - `per_gpu_train_batch_size`: None
312
+ - `per_gpu_eval_batch_size`: None
313
+ - `gradient_accumulation_steps`: 1
314
+ - `eval_accumulation_steps`: None
315
+ - `learning_rate`: 2e-05
316
+ - `weight_decay`: 0.0
317
+ - `adam_beta1`: 0.9
318
+ - `adam_beta2`: 0.999
319
+ - `adam_epsilon`: 1e-08
320
+ - `max_grad_norm`: 1.0
321
+ - `num_train_epochs`: 1
322
+ - `max_steps`: -1
323
+ - `lr_scheduler_type`: linear
324
+ - `lr_scheduler_kwargs`: {}
325
+ - `warmup_ratio`: 0.1
326
+ - `warmup_steps`: 0
327
+ - `log_level`: passive
328
+ - `log_level_replica`: warning
329
+ - `log_on_each_node`: True
330
+ - `logging_nan_inf_filter`: True
331
+ - `save_safetensors`: True
332
+ - `save_on_each_node`: False
333
+ - `save_only_model`: False
334
+ - `restore_callback_states_from_checkpoint`: False
335
+ - `no_cuda`: False
336
+ - `use_cpu`: False
337
+ - `use_mps_device`: False
338
+ - `seed`: 42
339
+ - `data_seed`: None
340
+ - `jit_mode_eval`: False
341
+ - `use_ipex`: False
342
+ - `bf16`: False
343
+ - `fp16`: True
344
+ - `fp16_opt_level`: O1
345
+ - `half_precision_backend`: auto
346
+ - `bf16_full_eval`: False
347
+ - `fp16_full_eval`: False
348
+ - `tf32`: None
349
+ - `local_rank`: 0
350
+ - `ddp_backend`: None
351
+ - `tpu_num_cores`: None
352
+ - `tpu_metrics_debug`: False
353
+ - `debug`: []
354
+ - `dataloader_drop_last`: False
355
+ - `dataloader_num_workers`: 0
356
+ - `dataloader_prefetch_factor`: None
357
+ - `past_index`: -1
358
+ - `disable_tqdm`: False
359
+ - `remove_unused_columns`: True
360
+ - `label_names`: None
361
+ - `load_best_model_at_end`: False
362
+ - `ignore_data_skip`: False
363
+ - `fsdp`: []
364
+ - `fsdp_min_num_params`: 0
365
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
366
+ - `fsdp_transformer_layer_cls_to_wrap`: None
367
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: False
387
+ - `hub_always_push`: False
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `eval_do_concat_batches`: True
392
+ - `fp16_backend`: auto
393
+ - `push_to_hub_model_id`: None
394
+ - `push_to_hub_organization`: None
395
+ - `mp_parameters`:
396
+ - `auto_find_batch_size`: False
397
+ - `full_determinism`: False
398
+ - `torchdynamo`: None
399
+ - `ray_scope`: last
400
+ - `ddp_timeout`: 1800
401
+ - `torch_compile`: False
402
+ - `torch_compile_backend`: None
403
+ - `torch_compile_mode`: None
404
+ - `dispatch_batches`: None
405
+ - `split_batches`: None
406
+ - `include_tokens_per_second`: False
407
+ - `include_num_input_tokens_seen`: False
408
+ - `neftune_noise_alpha`: None
409
+ - `optim_target_modules`: None
410
+ - `batch_eval_metrics`: False
411
+ - `batch_sampler`: no_duplicates
412
+ - `multi_dataset_batch_sampler`: proportional
413
+
414
+ </details>
415
+
416
+ ### Training Logs
417
+ | Epoch | Step | Training Loss | BAAI/bge-small-en-v1.5_cosine_map@100 |
418
+ |:------:|:----:|:-------------:|:-------------------------------------:|
419
+ | 0.0794 | 10 | 0.5344 | - |
420
+ | 0.1587 | 20 | 0.4615 | - |
421
+ | 0.2381 | 30 | 0.301 | - |
422
+ | 0.3175 | 40 | 0.2169 | - |
423
+ | 0.3968 | 50 | 0.1053 | - |
424
+ | 0.4762 | 60 | 0.1432 | - |
425
+ | 0.5556 | 70 | 0.1589 | - |
426
+ | 0.6349 | 80 | 0.1458 | - |
427
+ | 0.7143 | 90 | 0.1692 | - |
428
+ | 0.7937 | 100 | 0.1664 | - |
429
+ | 0.8730 | 110 | 0.1252 | - |
430
+ | 0.9524 | 120 | 0.1243 | - |
431
+ | 1.0 | 126 | - | 0.8858 |
432
+ | 0.0794 | 10 | 0.1393 | - |
433
+ | 0.1587 | 20 | 0.1504 | - |
434
+ | 0.2381 | 30 | 0.1009 | - |
435
+ | 0.3175 | 40 | 0.0689 | - |
436
+ | 0.3968 | 50 | 0.0301 | - |
437
+ | 0.4762 | 60 | 0.0647 | - |
438
+ | 0.5556 | 70 | 0.0748 | - |
439
+ | 0.6349 | 80 | 0.0679 | - |
440
+ | 0.7143 | 90 | 0.1091 | - |
441
+ | 0.7937 | 100 | 0.0953 | - |
442
+ | 0.8730 | 110 | 0.089 | - |
443
+ | 0.9524 | 120 | 0.0758 | - |
444
+ | 1.0 | 126 | - | 0.8878 |
445
+ | 0.0794 | 10 | 0.092 | - |
446
+ | 0.1587 | 20 | 0.0748 | - |
447
+ | 0.2381 | 30 | 0.0392 | - |
448
+ | 0.3175 | 40 | 0.014 | - |
449
+ | 0.3968 | 50 | 0.0057 | - |
450
+ | 0.4762 | 60 | 0.0208 | - |
451
+ | 0.5556 | 70 | 0.0173 | - |
452
+ | 0.6349 | 80 | 0.0195 | - |
453
+ | 0.7143 | 90 | 0.0349 | - |
454
+ | 0.7937 | 100 | 0.0483 | - |
455
+ | 0.8730 | 110 | 0.0254 | - |
456
+ | 0.9524 | 120 | 0.0325 | - |
457
+ | 1.0 | 126 | - | 0.8883 |
458
+ | 1.0317 | 130 | 0.0582 | - |
459
+ | 1.1111 | 140 | 0.0475 | - |
460
+ | 1.1905 | 150 | 0.0325 | - |
461
+ | 1.2698 | 160 | 0.0058 | - |
462
+ | 1.3492 | 170 | 0.0054 | - |
463
+ | 1.4286 | 180 | 0.0047 | - |
464
+ | 1.5079 | 190 | 0.0076 | - |
465
+ | 1.5873 | 200 | 0.0091 | - |
466
+ | 1.6667 | 210 | 0.0232 | - |
467
+ | 1.7460 | 220 | 0.0147 | - |
468
+ | 1.8254 | 230 | 0.0194 | - |
469
+ | 1.9048 | 240 | 0.0186 | - |
470
+ | 1.9841 | 250 | 0.0141 | - |
471
+ | 2.0 | 252 | - | 0.8857 |
472
+ | 2.0635 | 260 | 0.037 | - |
473
+ | 2.1429 | 270 | 0.0401 | - |
474
+ | 2.2222 | 280 | 0.0222 | - |
475
+ | 2.3016 | 290 | 0.0134 | - |
476
+ | 2.3810 | 300 | 0.008 | - |
477
+ | 2.4603 | 310 | 0.0199 | - |
478
+ | 2.5397 | 320 | 0.017 | - |
479
+ | 2.6190 | 330 | 0.0164 | - |
480
+ | 2.6984 | 340 | 0.0344 | - |
481
+ | 2.7778 | 350 | 0.0352 | - |
482
+ | 2.8571 | 360 | 0.0346 | - |
483
+ | 2.9365 | 370 | 0.0256 | - |
484
+ | 3.0 | 378 | - | 0.8868 |
485
+ | 0.7937 | 100 | 0.0064 | 0.8878 |
486
+
487
+
488
+ ### Framework Versions
489
+ - Python: 3.11.5
490
+ - Sentence Transformers: 3.0.1
491
+ - Transformers: 4.41.2
492
+ - PyTorch: 2.1.2+cu121
493
+ - Accelerate: 0.31.0
494
+ - Datasets: 2.19.1
495
+ - Tokenizers: 0.19.1
496
+
497
+ ## Citation
498
+
499
+ ### BibTeX
500
+
501
+ #### Sentence Transformers
502
+ ```bibtex
503
+ @inproceedings{reimers-2019-sentence-bert,
504
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
505
+ author = "Reimers, Nils and Gurevych, Iryna",
506
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
507
+ month = "11",
508
+ year = "2019",
509
+ publisher = "Association for Computational Linguistics",
510
+ url = "https://arxiv.org/abs/1908.10084",
511
+ }
512
+ ```
513
+
514
+ #### MultipleNegativesRankingLoss
515
+ ```bibtex
516
+ @misc{henderson2017efficient,
517
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
518
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
519
+ year={2017},
520
+ eprint={1705.00652},
521
+ archivePrefix={arXiv},
522
+ primaryClass={cs.CL}
523
+ }
524
+ ```
525
+
526
+ <!--
527
+ ## Glossary
528
+
529
+ *Clearly define terms in order to be accessible across audiences.*
530
+ -->
531
+
532
+ <!--
533
+ ## Model Card Authors
534
+
535
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
536
+ -->
537
+
538
+ <!--
539
+ ## Model Card Contact
540
+
541
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
542
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152673c5a188f82604f0f6e279e766bfd1ca0c2d7441c102aa9aa1ba34aad08b
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff