juanpablomesa commited on
Commit
3e8d0b4
1 Parent(s): 3dada86

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:4012
29
+ - loss:MultipleNegativesRankingLoss
30
+ widget:
31
+ - source_sentence: 'Extensive messenger RNA editing generates transcript and protein
32
+ diversity in genes involved in neural excitability, as previously described, as
33
+ well as in genes participating in a broad range of other cellular functions. '
34
+ sentences:
35
+ - Do cephalopods use RNA editing less frequently than other species?
36
+ - GV1001 vaccine targets which enzyme?
37
+ - Which event results in the acetylation of S6K1?
38
+ - source_sentence: Yes, exposure to household furry pets influences the gut microbiota
39
+ of infants.
40
+ sentences:
41
+ - Can pets affect infant microbiomed?
42
+ - What is the mode of action of Thiazovivin?
43
+ - What are the effects of CAMK4 inhibition?
44
+ - source_sentence: "In children with heart failure evidence of the effect of enalapril\
45
+ \ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
46
+ \ children with cardiac failure secondary to congenital heart malformations before\
47
+ \ and after cardiac surgery, impaired ventricular function , valvar regurgitation,\
48
+ \ congestive cardiomyopathy, , arterial hypertension, life-threatening arrhythmias\
49
+ \ coexisting with circulatory insufficiency. \nACE inhibitors have shown a transient\
50
+ \ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
51
+ \ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
52
+ \ studies."
53
+ sentences:
54
+ - Which receptors can be evaluated with the [18F]altanserin?
55
+ - In what proportion of children with heart failure has Enalapril been shown to
56
+ be safe and effective?
57
+ - Which major signaling pathways are regulated by RIP1?
58
+ - source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
59
+ a novel type of chromatin condensation involving alterations of linker histone
60
+ H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
61
+ but their mechanism of action remains unclear.
62
+ sentences:
63
+ - What is the relationship between the X chromosome and a neutrophil drumstick?
64
+ - Which microRNAs are involved in exercise adaptation?
65
+ - How are SAHFS created?
66
+ - source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
67
+ circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
68
+ are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
69
+ deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
70
+ of all three clusters (tricluster deletion) led to a severe axonal arborization
71
+ defect and loss of self-avoidance.
72
+ sentences:
73
+ - What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
74
+ in mice?
75
+ - what is the role of MEF-2 in cardiomyocyte differentiation?
76
+ - How many periods of regulatory innovation led to the evolution of vertebrates?
77
+ model-index:
78
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: sentence transformers/all mpnet base v2
85
+ type: sentence-transformers/all-mpnet-base-v2
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.8486562942008486
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.9363507779349364
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.9476661951909476
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.958981612446959
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.8486562942008486
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.31211692597831214
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.1895332390381895
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.09589816124469587
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.8486562942008486
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.9363507779349364
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.9476661951909476
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.958981612446959
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.9104527449456198
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.894245751105723
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.8956968198991456
131
+ name: Cosine Map@100
132
+ ---
133
+
134
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
143
+ - **Maximum Sequence Length:** 384 tokens
144
+ - **Output Dimensionality:** 768 tokens
145
+ - **Similarity Function:** Cosine Similarity
146
+ <!-- - **Training Dataset:** Unknown -->
147
+ <!-- - **Language:** Unknown -->
148
+ <!-- - **License:** Unknown -->
149
+
150
+ ### Model Sources
151
+
152
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
153
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
154
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
155
+
156
+ ### Full Model Architecture
157
+
158
+ ```
159
+ SentenceTransformer(
160
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
161
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
162
+ (2): Normalize()
163
+ )
164
+ ```
165
+
166
+ ## Usage
167
+
168
+ ### Direct Usage (Sentence Transformers)
169
+
170
+ First install the Sentence Transformers library:
171
+
172
+ ```bash
173
+ pip install -U sentence-transformers
174
+ ```
175
+
176
+ Then you can load this model and run inference.
177
+ ```python
178
+ from sentence_transformers import SentenceTransformer
179
+
180
+ # Download from the 🤗 Hub
181
+ model = SentenceTransformer("juanpablomesa/all-mpnet-base-v2-bioasq-1epoch-batch32-100steps")
182
+ # Run inference
183
+ sentences = [
184
+ 'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
185
+ 'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
186
+ 'How many periods of regulatory innovation led to the evolution of vertebrates?',
187
+ ]
188
+ embeddings = model.encode(sentences)
189
+ print(embeddings.shape)
190
+ # [3, 768]
191
+
192
+ # Get the similarity scores for the embeddings
193
+ similarities = model.similarity(embeddings, embeddings)
194
+ print(similarities.shape)
195
+ # [3, 3]
196
+ ```
197
+
198
+ <!--
199
+ ### Direct Usage (Transformers)
200
+
201
+ <details><summary>Click to see the direct usage in Transformers</summary>
202
+
203
+ </details>
204
+ -->
205
+
206
+ <!--
207
+ ### Downstream Usage (Sentence Transformers)
208
+
209
+ You can finetune this model on your own dataset.
210
+
211
+ <details><summary>Click to expand</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Out-of-Scope Use
218
+
219
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
220
+ -->
221
+
222
+ ## Evaluation
223
+
224
+ ### Metrics
225
+
226
+ #### Information Retrieval
227
+ * Dataset: `sentence-transformers/all-mpnet-base-v2`
228
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
229
+
230
+ | Metric | Value |
231
+ |:--------------------|:-----------|
232
+ | cosine_accuracy@1 | 0.8487 |
233
+ | cosine_accuracy@3 | 0.9364 |
234
+ | cosine_accuracy@5 | 0.9477 |
235
+ | cosine_accuracy@10 | 0.959 |
236
+ | cosine_precision@1 | 0.8487 |
237
+ | cosine_precision@3 | 0.3121 |
238
+ | cosine_precision@5 | 0.1895 |
239
+ | cosine_precision@10 | 0.0959 |
240
+ | cosine_recall@1 | 0.8487 |
241
+ | cosine_recall@3 | 0.9364 |
242
+ | cosine_recall@5 | 0.9477 |
243
+ | cosine_recall@10 | 0.959 |
244
+ | cosine_ndcg@10 | 0.9105 |
245
+ | cosine_mrr@10 | 0.8942 |
246
+ | **cosine_map@100** | **0.8957** |
247
+
248
+ <!--
249
+ ## Bias, Risks and Limitations
250
+
251
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
252
+ -->
253
+
254
+ <!--
255
+ ### Recommendations
256
+
257
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
258
+ -->
259
+
260
+ ## Training Details
261
+
262
+ ### Training Dataset
263
+
264
+ #### Unnamed Dataset
265
+
266
+
267
+ * Size: 4,012 training samples
268
+ * Columns: <code>positive</code> and <code>anchor</code>
269
+ * Approximate statistics based on the first 1000 samples:
270
+ | | positive | anchor |
271
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
272
+ | type | string | string |
273
+ | details | <ul><li>min: 3 tokens</li><li>mean: 63.14 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
274
+ * Samples:
275
+ | positive | anchor |
276
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
277
+ | <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code> | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
278
+ | <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code> | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code> |
279
+ | <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code> |
280
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
281
+ ```json
282
+ {
283
+ "scale": 20.0,
284
+ "similarity_fct": "cos_sim"
285
+ }
286
+ ```
287
+
288
+ ### Training Hyperparameters
289
+ #### Non-Default Hyperparameters
290
+
291
+ - `eval_strategy`: steps
292
+ - `per_device_train_batch_size`: 32
293
+ - `per_device_eval_batch_size`: 16
294
+ - `learning_rate`: 2e-05
295
+ - `num_train_epochs`: 1
296
+ - `warmup_ratio`: 0.1
297
+ - `fp16`: True
298
+ - `batch_sampler`: no_duplicates
299
+
300
+ #### All Hyperparameters
301
+ <details><summary>Click to expand</summary>
302
+
303
+ - `overwrite_output_dir`: False
304
+ - `do_predict`: False
305
+ - `eval_strategy`: steps
306
+ - `prediction_loss_only`: True
307
+ - `per_device_train_batch_size`: 32
308
+ - `per_device_eval_batch_size`: 16
309
+ - `per_gpu_train_batch_size`: None
310
+ - `per_gpu_eval_batch_size`: None
311
+ - `gradient_accumulation_steps`: 1
312
+ - `eval_accumulation_steps`: None
313
+ - `learning_rate`: 2e-05
314
+ - `weight_decay`: 0.0
315
+ - `adam_beta1`: 0.9
316
+ - `adam_beta2`: 0.999
317
+ - `adam_epsilon`: 1e-08
318
+ - `max_grad_norm`: 1.0
319
+ - `num_train_epochs`: 1
320
+ - `max_steps`: -1
321
+ - `lr_scheduler_type`: linear
322
+ - `lr_scheduler_kwargs`: {}
323
+ - `warmup_ratio`: 0.1
324
+ - `warmup_steps`: 0
325
+ - `log_level`: passive
326
+ - `log_level_replica`: warning
327
+ - `log_on_each_node`: True
328
+ - `logging_nan_inf_filter`: True
329
+ - `save_safetensors`: True
330
+ - `save_on_each_node`: False
331
+ - `save_only_model`: False
332
+ - `restore_callback_states_from_checkpoint`: False
333
+ - `no_cuda`: False
334
+ - `use_cpu`: False
335
+ - `use_mps_device`: False
336
+ - `seed`: 42
337
+ - `data_seed`: None
338
+ - `jit_mode_eval`: False
339
+ - `use_ipex`: False
340
+ - `bf16`: False
341
+ - `fp16`: True
342
+ - `fp16_opt_level`: O1
343
+ - `half_precision_backend`: auto
344
+ - `bf16_full_eval`: False
345
+ - `fp16_full_eval`: False
346
+ - `tf32`: None
347
+ - `local_rank`: 0
348
+ - `ddp_backend`: None
349
+ - `tpu_num_cores`: None
350
+ - `tpu_metrics_debug`: False
351
+ - `debug`: []
352
+ - `dataloader_drop_last`: False
353
+ - `dataloader_num_workers`: 0
354
+ - `dataloader_prefetch_factor`: None
355
+ - `past_index`: -1
356
+ - `disable_tqdm`: False
357
+ - `remove_unused_columns`: True
358
+ - `label_names`: None
359
+ - `load_best_model_at_end`: False
360
+ - `ignore_data_skip`: False
361
+ - `fsdp`: []
362
+ - `fsdp_min_num_params`: 0
363
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
364
+ - `fsdp_transformer_layer_cls_to_wrap`: None
365
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
366
+ - `deepspeed`: None
367
+ - `label_smoothing_factor`: 0.0
368
+ - `optim`: adamw_torch
369
+ - `optim_args`: None
370
+ - `adafactor`: False
371
+ - `group_by_length`: False
372
+ - `length_column_name`: length
373
+ - `ddp_find_unused_parameters`: None
374
+ - `ddp_bucket_cap_mb`: None
375
+ - `ddp_broadcast_buffers`: False
376
+ - `dataloader_pin_memory`: True
377
+ - `dataloader_persistent_workers`: False
378
+ - `skip_memory_metrics`: True
379
+ - `use_legacy_prediction_loop`: False
380
+ - `push_to_hub`: False
381
+ - `resume_from_checkpoint`: None
382
+ - `hub_model_id`: None
383
+ - `hub_strategy`: every_save
384
+ - `hub_private_repo`: False
385
+ - `hub_always_push`: False
386
+ - `gradient_checkpointing`: False
387
+ - `gradient_checkpointing_kwargs`: None
388
+ - `include_inputs_for_metrics`: False
389
+ - `eval_do_concat_batches`: True
390
+ - `fp16_backend`: auto
391
+ - `push_to_hub_model_id`: None
392
+ - `push_to_hub_organization`: None
393
+ - `mp_parameters`:
394
+ - `auto_find_batch_size`: False
395
+ - `full_determinism`: False
396
+ - `torchdynamo`: None
397
+ - `ray_scope`: last
398
+ - `ddp_timeout`: 1800
399
+ - `torch_compile`: False
400
+ - `torch_compile_backend`: None
401
+ - `torch_compile_mode`: None
402
+ - `dispatch_batches`: None
403
+ - `split_batches`: None
404
+ - `include_tokens_per_second`: False
405
+ - `include_num_input_tokens_seen`: False
406
+ - `neftune_noise_alpha`: None
407
+ - `optim_target_modules`: None
408
+ - `batch_eval_metrics`: False
409
+ - `batch_sampler`: no_duplicates
410
+ - `multi_dataset_batch_sampler`: proportional
411
+
412
+ </details>
413
+
414
+ ### Training Logs
415
+ | Epoch | Step | Training Loss | sentence-transformers/all-mpnet-base-v2_cosine_map@100 |
416
+ |:------:|:----:|:-------------:|:------------------------------------------------------:|
417
+ | 0 | 0 | - | 0.8367 |
418
+ | 0.7937 | 100 | 0.1153 | 0.8957 |
419
+
420
+
421
+ ### Framework Versions
422
+ - Python: 3.11.5
423
+ - Sentence Transformers: 3.0.1
424
+ - Transformers: 4.41.2
425
+ - PyTorch: 2.1.2+cu121
426
+ - Accelerate: 0.31.0
427
+ - Datasets: 2.19.1
428
+ - Tokenizers: 0.19.1
429
+
430
+ ## Citation
431
+
432
+ ### BibTeX
433
+
434
+ #### Sentence Transformers
435
+ ```bibtex
436
+ @inproceedings{reimers-2019-sentence-bert,
437
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
438
+ author = "Reimers, Nils and Gurevych, Iryna",
439
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
440
+ month = "11",
441
+ year = "2019",
442
+ publisher = "Association for Computational Linguistics",
443
+ url = "https://arxiv.org/abs/1908.10084",
444
+ }
445
+ ```
446
+
447
+ #### MultipleNegativesRankingLoss
448
+ ```bibtex
449
+ @misc{henderson2017efficient,
450
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
451
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
452
+ year={2017},
453
+ eprint={1705.00652},
454
+ archivePrefix={arXiv},
455
+ primaryClass={cs.CL}
456
+ }
457
+ ```
458
+
459
+ <!--
460
+ ## Glossary
461
+
462
+ *Clearly define terms in order to be accessible across audiences.*
463
+ -->
464
+
465
+ <!--
466
+ ## Model Card Authors
467
+
468
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
469
+ -->
470
+
471
+ <!--
472
+ ## Model Card Contact
473
+
474
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
475
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:245b3776ed321afa81779b9d89bcda78ae20b5fba5dc280eaa06f3d2e51f02d1
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff