juancopi81 commited on
Commit
f2c092d
·
1 Parent(s): f3d924e

Update README.md new tokenizer

Browse files
Files changed (1) hide show
  1. README.md +92 -27
README.md CHANGED
@@ -1,61 +1,126 @@
1
  ---
2
  tags:
3
  - generated_from_keras_callback
 
4
  model-index:
5
  - name: juancopi81/mutopia_guitar_mmm
6
  results: []
 
 
 
 
 
7
  ---
8
 
9
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
10
- probably proofread and complete it, then remove this comment. -->
11
-
12
  # juancopi81/mutopia_guitar_mmm
13
 
14
- This model was trained from scratch on an unknown dataset.
 
 
 
 
15
  It achieves the following results on the evaluation set:
16
- - Train Loss: 3.4909
17
- - Validation Loss: 3.7323
18
- - Epoch: 9
19
 
20
  ## Model description
21
 
22
- More information needed
 
23
 
24
  ## Intended uses & limitations
25
 
26
- More information needed
 
 
 
 
 
 
 
 
27
 
28
  ## Training and evaluation data
29
 
30
- More information needed
 
31
 
32
- ## Training procedure
33
 
34
  ### Training hyperparameters
35
 
36
- The following hyperparameters were used during training:
 
 
 
37
  - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
38
- - training_precision: mixed_float16
39
 
40
- ### Training results
 
41
 
 
 
 
 
 
 
42
  | Train Loss | Validation Loss | Epoch |
43
  |:----------:|:---------------:|:-----:|
44
- | 6.1361 | 6.4569 | 0 |
45
- | 5.6383 | 5.8249 | 1 |
46
- | 4.9125 | 4.8956 | 2 |
47
- | 4.2013 | 4.2778 | 3 |
48
- | 3.8665 | 4.0330 | 4 |
49
- | 3.7106 | 3.8956 | 5 |
50
- | 3.6041 | 3.7995 | 6 |
51
- | 3.5301 | 3.7485 | 7 |
52
- | 3.4973 | 3.7323 | 8 |
53
- | 3.4909 | 3.7323 | 9 |
54
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
-
58
  - Transformers 4.22.1
59
  - TensorFlow 2.8.2
60
  - Datasets 2.5.1
61
- - Tokenizers 0.12.1
 
1
  ---
2
  tags:
3
  - generated_from_keras_callback
4
+ - music
5
  model-index:
6
  - name: juancopi81/mutopia_guitar_mmm
7
  results: []
8
+ datasets:
9
+ - juancopi81/mutopia_guitar_dataset
10
+ widget:
11
+ - text: "PIECE_START TIME_SIGNATURE=4_4 BPM=90 TRACK_START INST=0 DENSITY=2 BAR_START NOTE_ON=43"
12
+ example_title: "Time signature 4/4, BPM=90, NOTE=G2"
13
  ---
14
 
 
 
 
15
  # juancopi81/mutopia_guitar_mmm
16
 
17
+ Music generation could be approached similarly to language generation. There are many ways to represent music as text and then use a language model to create a model capable of music generation. For encoding MIDI files as text, I am using the excellent [implementation](https://github.com/AI-Guru/MMM-JSB) of Dr. Tristan Beheren of the paper: [MMM: Exploring Conditional Multi-Track Music Generation with the Transformer](https://arxiv.org/abs/2008.06048).
18
+
19
+ This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [Mutopia Guitar Dataset](https://huggingface.co/datasets/juancopi81/mutopia_guitar_dataset). Use the widget to generate your piece, and then use [this notebook](https://colab.research.google.com/drive/14vlJwCvDmNH6SFfVuYY0Y18qTbaHEJCY?usp=sharing) to listen to the results (work in progress).
20
+ I created the notebook as an adaptation of [the one created by Dr. Tristan Behrens](https://huggingface.co/TristanBehrens/js-fakes-4bars).
21
+
22
  It achieves the following results on the evaluation set:
23
+ - Train Loss: 0.5365
24
+ - Validation Loss: 1.5482
 
25
 
26
  ## Model description
27
 
28
+ The model is GPT-2 loaded with the GPT2LMHeadModel architecture from Hugging Face. The context size is 256, and the vocabulary size is 588. The model uses a
29
+ `WhitespaceSplit` pre-tokenizer. The [tokenizer](https://huggingface.co/juancopi81/mutopia_guitar_dataset_tokenizer) is also in the Hugging Face hub.
30
 
31
  ## Intended uses & limitations
32
 
33
+ I built this model to learn more about how to use Hugging Face. I am implementing some of the parts of the [Hugging Face course](https://huggingface.co/course/chapter1/1) with a project that I find interesting.
34
+ The main intention of this model is educational. I am creating a [series of notebooks](https://github.com/juancopi81/MMM_Mutopia_Guitar) where I show every step of the process:
35
+ - Collecting the data
36
+ - Pre-processing the data
37
+ - Training a tokenizer from scratch
38
+ - Fine-tuning a GPT-2 model
39
+ - Building a Gradio app for the model
40
+
41
+ I trained the model using the free version of Colab with a small dataset. Right now, it is heavily overfitting. My idea is to have a more extensive dataset of Guitar Music from Latinoamerica to train a new model similar to the Mutopia Guitar Model, using more GPU resources.
42
 
43
  ## Training and evaluation data
44
 
45
+ I am training the model with [Mutopia Guitar Dataset](https://huggingface.co/datasets/juancopi81/mutopia_guitar_dataset). This dataset consists of the soloist guitar pieces of the [Mutopia Project](https://www.mutopiaproject.org/).
46
+ The dataset mainly contains guitar music from western classical composers, such as Sor, Aguado, Carcassi, and Giuliani.
47
 
48
+ For the first epochs of training, I transposed the notes by raising and lowering the pitches using the twelve semi-tones of an entire octave. Later, I trained the model without transposing the pieces so that generation shows better results of a real guitar piece.
49
 
50
  ### Training hyperparameters
51
 
52
+ The following hyperparameters were used during training (with transposition):
53
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 5726, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
54
+
55
+ The following hyperparameters were used during training (without transposition - first round):
56
  - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
 
57
 
58
+ The following hyperparameters were used during training (without transposition - second round):
59
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
60
 
61
+ The following hyperparameters were used during training (without transposition, new tokenizer - third round):
62
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
63
+
64
+ - training_precision: mixed_float16
65
+ ### Training results
66
+ Using transposition:
67
  | Train Loss | Validation Loss | Epoch |
68
  |:----------:|:---------------:|:-----:|
69
+ | 1.0705 | 1.3590 | 0 |
70
+ | 0.8889 | 1.3702 | 1 |
71
+ | 0.7588 | 1.3974 | 2 |
72
+ | 0.7294 | 1.4813 | 3 |
73
+ | 0.6263 | 1.5263 | 4 |
74
+ | 0.5841 | 1.5263 | 5 |
75
+ | 0.5844 | 1.5263 | 6 |
76
+ | 0.5837 | 1.5346 | 7 |
77
+ | 0.5798 | 1.5411 | 8 |
78
+ | 0.5773 | 1.5440 | 9 |
79
+
80
+ Without transposition (first round):
81
+ | Train Loss | Validation Loss | Epoch |
82
+ |:----------:|:---------------:|:-----:|
83
+ | 0.5503 | 1.5436 | 0 |
84
+ | 0.5503 | 1.5425 | 1 |
85
+ | 0.5476 | 1.5425 | 2 |
86
+ | 0.5467 | 1.5425 | 3 |
87
+ | 0.5447 | 1.5431 | 4 |
88
+ | 0.5418 | 1.5447 | 5 |
89
+ | 0.5418 | 1.5451 | 6 |
90
+ | 0.5401 | 1.5472 | 7 |
91
+ | 0.5386 | 1.5479 | 8 |
92
+ | 0.5365 | 1.5482 | 9 |
93
+
94
+ Without transposition (second round):
95
+ | Train Loss | Validation Loss | Epoch |
96
+ |:----------:|:---------------:|:-----:|
97
+ | 0.5368 | 1.5482 | 0 |
98
+ | 0.5355 | 1.5480 | 1 |
99
+ | 0.5326 | 1.5488 | 2 |
100
+ | 0.5363 | 1.5493 | 3 |
101
+ | 0.5346 | 1.5488 | 4 |
102
+ | 0.5329 | 1.5502 | 5 |
103
+ | 0.5329 | 1.5514 | 6 |
104
+ | 0.5308 | 1.5514 | 7 |
105
+ | 0.5292 | 1.5536 | 8 |
106
+ | 0.5272 | 1.5543 | 9 |
107
+
108
+ Without transposition (third round - new tokenizer):
109
+ | Train Loss | Validation Loss | Epoch |
110
+ |:----------:|:---------------:|:-----:|
111
+ | 6.1361 | 6.4569 | 0 |
112
+ | 5.6383 | 5.8249 | 1 |
113
+ | 4.9125 | 4.8956 | 2 |
114
+ | 4.2013 | 4.2778 | 3 |
115
+ | 3.8665 | 4.0330 | 4 |
116
+ | 3.7106 | 3.8956 | 5 |
117
+ | 3.6041 | 3.7995 | 6 |
118
+ | 3.5301 | 3.7485 | 7 |
119
+ | 3.4973 | 3.7323 | 8 |
120
+ | 3.4909 | 3.7323 | 9 |
121
 
122
  ### Framework versions
 
123
  - Transformers 4.22.1
124
  - TensorFlow 2.8.2
125
  - Datasets 2.5.1
126
+ - Tokenizers 0.12.1