jstoone commited on
Commit
edc777f
1 Parent(s): f296ebb

✨ Initial script configurations.

Browse files
Files changed (2) hide show
  1. run.sh +48 -0
  2. run_speech_recognition_seq2seq_streaming.py +769 -0
run.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # source: https://github.com/kamfonas/whisper-fine-tuning-event/compare/master...minor-mods-by-farsipal
2
+
3
+ python run_speech_recognition_seq2seq_streaming.py \
4
+ --model_name_or_path 'openai/whisper-medium' \
5
+ --model_revision main \
6
+ --do_train True \
7
+ --do_eval True \
8
+ --use_auth_token False \
9
+ --freeze_feature_encoder False \
10
+ --freeze_encoder False \
11
+ --model_index_name 'Whisper Medium Danish (CV11 + FLEAURS)' \
12
+ --dataset_name 'mozilla-foundation/common_voice_11_0,google/fleurs' \
13
+ --dataset_config_name 'da,da_dk' \
14
+ --train_split_name 'train+validation,train+validation' \
15
+ --eval_split_name 'test,-' \
16
+ --text_column_name 'sentence,raw_transcription' \
17
+ --audio_column_name 'audio,audio' \
18
+ --streaming False \
19
+ --max_duration_in_seconds 30 \
20
+ --do_lower_case False \
21
+ --do_remove_punctuation False \
22
+ --do_normalize_eval True \
23
+ --language danish \
24
+ --task transcribe \
25
+ --shuffle_buffer_size 500 \
26
+ --output_dir './' \
27
+ --overwrite_output_dir True \
28
+ --per_device_train_batch_size 32 \
29
+ --gradient_accumulation_steps 1 \
30
+ --learning_rate 8e-6 \
31
+ --dropout 0.1 \
32
+ --warmup_steps 500 \
33
+ --max_steps 10000 \
34
+ --eval_steps 1000 \
35
+ --gradient_checkpointing True \
36
+ --cache_dir '~/.cache' \
37
+ --fp16 True \
38
+ --evaluation_strategy steps \
39
+ --per_device_eval_batch_size 8 \
40
+ --predict_with_generate True \
41
+ --generation_max_length 225 \
42
+ --save_steps 1000 \
43
+ --logging_steps 25 \
44
+ --report_to tensorboard \
45
+ --load_best_model_at_end True \
46
+ --metric_for_best_model wer \
47
+ --greater_is_better False \
48
+ --push_to_hub
run_speech_recognition_seq2seq_streaming.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition
18
+ with 🤗 Datasets' streaming mode.
19
+ """
20
+ # This progam was modified by Michael Kamfonas ([email protected]) on Dec 11 2022
21
+ # - added options for drpout, gradient_checkpointing, use_cache, stopping_strategy and streaming
22
+ # - restructured it to enable both streaming and non-streaming modes
23
+ # - allows concatenation of mutiple datasets (single-string comma-separated) for interleaving
24
+ # The following params must have the same number of comma-separated (,) elements:
25
+ # dataset_name,
26
+ # dataset_config_name,
27
+ # train_split_name and eval_split_name (each element plus-separated (+) for multiple splits),
28
+ # text_column_name and audio_column_name
29
+
30
+
31
+ import logging
32
+ import os
33
+ import sys
34
+ from dataclasses import dataclass, field
35
+ from typing import Any, Dict, List, Optional, Union
36
+
37
+ import datasets
38
+ import torch
39
+ from datasets import Audio, DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
40
+ from torch.utils.data import IterableDataset
41
+
42
+ import evaluate
43
+ import transformers
44
+ from transformers import (
45
+ AutoConfig,
46
+ AutoFeatureExtractor,
47
+ AutoModelForSpeechSeq2Seq,
48
+ AutoProcessor,
49
+ AutoTokenizer,
50
+ HfArgumentParser,
51
+ Seq2SeqTrainer,
52
+ Seq2SeqTrainingArguments,
53
+ TrainerCallback,
54
+ set_seed,
55
+ )
56
+ from transformers.trainer_pt_utils import IterableDatasetShard
57
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
58
+ from transformers.utils import check_min_version, send_example_telemetry
59
+ from transformers.utils.versions import require_version
60
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
61
+
62
+ TEXT_COL_NAME="text"
63
+ AUDIO_COL_NAME="audio"
64
+
65
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
66
+ check_min_version("4.25.0.dev0")
67
+
68
+ require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
69
+
70
+ logger = logging.getLogger(__name__)
71
+
72
+
73
+ @dataclass
74
+ class ModelArguments:
75
+ """
76
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
77
+ """
78
+
79
+ model_name_or_path: str = field(
80
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
81
+ )
82
+ config_name: Optional[str] = field(
83
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
84
+ )
85
+ tokenizer_name: Optional[str] = field(
86
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
87
+ )
88
+ feature_extractor_name: Optional[str] = field(
89
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
90
+ )
91
+ cache_dir: Optional[str] = field(
92
+ default=None,
93
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
94
+ )
95
+ use_fast_tokenizer: bool = field(
96
+ default=True,
97
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
98
+ )
99
+ model_revision: str = field(
100
+ default="main",
101
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
102
+ )
103
+ use_auth_token: bool = field(
104
+ default=False,
105
+ metadata={
106
+ "help": (
107
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
108
+ "with private models)."
109
+ )
110
+ },
111
+ )
112
+ freeze_feature_encoder: bool = field(
113
+ default=True, metadata={"help": "Deprecated - Whether to freeze the feature encoder layers of the model."}
114
+ )
115
+ freeze_encoder: bool = field(
116
+ default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
117
+ )
118
+ forced_decoder_ids: List[List[int]] = field(
119
+ default=None,
120
+ metadata={
121
+ "help": (
122
+ "A list of pairs of integers which indicates a mapping from generation indices to token indices "
123
+ "that will be forced before sampling. For example, [[0, 123]] means the first generated token "
124
+ "will always be a token of index 123."
125
+ )
126
+ },
127
+ )
128
+ suppress_tokens: List[int] = field(
129
+ default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
130
+ )
131
+ model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
132
+
133
+ ## added by Michael Kamfonas
134
+ use_cache: bool = field(
135
+ default=False, metadata={"help": "Whether to use cache."}
136
+ )
137
+
138
+ dropout: float = field(
139
+ default = 0.0, metadata = {"help": "dropout probability."}
140
+ )
141
+
142
+ attention_dropout: float = field(
143
+ default = 0.0, metadata = {"help": "attention_dropout probability."}
144
+ )
145
+
146
+
147
+
148
+ @dataclass
149
+ class DataTrainingArguments:
150
+ """
151
+ Arguments pertaining to what data we are going to input our model for training and eval.
152
+ """
153
+
154
+ dataset_name: str = field(
155
+ default=None,
156
+ metadata={"help": "The name of the dataset to use (via the datasets library)."}
157
+ )
158
+ dataset_config_name: Optional[str] = field(
159
+ default=None,
160
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
161
+ )
162
+ text_column: Optional[str] = field(
163
+ default=None,
164
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
165
+ )
166
+ max_train_samples: Optional[int] = field(
167
+ default=None,
168
+ metadata={
169
+ "help": (
170
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
171
+ "value if set."
172
+ )
173
+ },
174
+ )
175
+ max_eval_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": (
179
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
180
+ "value if set."
181
+ )
182
+ },
183
+ )
184
+ audio_column_name: str = field(
185
+ default="audio",
186
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
187
+ )
188
+ text_column_name: str = field(
189
+ default="text",
190
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
191
+ )
192
+ max_duration_in_seconds: float = field(
193
+ default=20.0,
194
+ metadata={
195
+ "help": (
196
+ "Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
197
+ " 'max_duration_in_seconds`"
198
+ )
199
+ },
200
+ )
201
+ min_duration_in_seconds: float = field(
202
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
+ )
204
+ train_split_name: str = field(
205
+ default="train",
206
+ metadata={
207
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
208
+ },
209
+ )
210
+ eval_split_name: str = field(
211
+ default="test",
212
+ metadata={
213
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
214
+ },
215
+ )
216
+ do_lower_case: bool = field(
217
+ default=False,
218
+ metadata={"help": "Whether the target text should be lower cased."},
219
+ )
220
+ do_remove_punctuation: bool = field(
221
+ default=False,
222
+ metadata={"help": "Whether the target text should be striped of punctuation."},
223
+ )
224
+ do_normalize_eval: bool = field(
225
+ default=True,
226
+ metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
227
+ )
228
+ language: str = field(
229
+ default=None,
230
+ metadata={
231
+ "help": (
232
+ "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
233
+ "only. For English speech recognition, it should be set to `None`."
234
+ )
235
+ },
236
+ )
237
+ task: str = field(
238
+ default="transcribe",
239
+ metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
240
+ )
241
+ shuffle_buffer_size: Optional[int] = field(
242
+ default=500,
243
+ metadata={
244
+ "help": (
245
+ "The number of streamed examples to download before shuffling them. The large the buffer, "
246
+ "the closer it is to real offline shuffling."
247
+ )
248
+ },
249
+ )
250
+ stopping_strategy: Optional[str] = field(
251
+ default="all_exhausted",
252
+ metadata={
253
+ "help": "Strategy used to consume interleaved data. Default = 'all_exhausted'"
254
+ }
255
+ )
256
+ streaming: bool = field(
257
+ default=True,
258
+ metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
259
+ )
260
+
261
+ @dataclass
262
+ class DataCollatorSpeechSeq2SeqWithPadding:
263
+ """
264
+ Data collator that will dynamically pad the inputs received.
265
+ Args:
266
+ processor ([`WhisperProcessor`])
267
+ The processor used for processing the data.
268
+ decoder_start_token_id (`int`)
269
+ The begin-of-sentence of the decoder.
270
+ """
271
+
272
+ processor: Any
273
+ decoder_start_token_id: int
274
+
275
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
276
+ # split inputs and labels since they have to be of different lengths and need
277
+ # different padding methods
278
+ model_input_name = self.processor.model_input_names[0]
279
+ input_features = [{model_input_name: feature[model_input_name]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
283
+
284
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
285
+
286
+ # replace padding with -100 to ignore loss correctly
287
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
288
+
289
+ # if bos token is appended in previous tokenization step,
290
+ # cut bos token here as it's append later anyways
291
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
292
+ labels = labels[:, 1:]
293
+
294
+ batch["labels"] = labels
295
+
296
+ return batch
297
+
298
+
299
+ def load_streaming_dataset(dataset_name, dataset_config_name, split="train", **kwargs):
300
+ """
301
+ Utility function to load a dataset in streaming mode. For datasets with multiple splits,
302
+ each split is loaded individually and then splits combined by taking alternating examples from
303
+ each (interleaving).
304
+ """
305
+ if "+" in split:
306
+ # load multiple splits separated by the `+` symbol with streaming mode
307
+ dataset_splits = [
308
+ load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs)
309
+ for split_name in split.split("+")
310
+ ]
311
+ # interleave multiple splits to form one dataset
312
+ interleaved_dataset = interleave_datasets(dataset_splits)
313
+ return interleaved_dataset
314
+ else:
315
+ # load a single split *with* streaming mode
316
+ dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs)
317
+ return dataset
318
+
319
+ def load_multiple_streaming_datasets(
320
+ dataset_names: List,
321
+ dataset_config_names: List,
322
+ splits: Optional[List] = None,
323
+ text_column_names: Optional[List] = None,
324
+ audio_column_names: Optional[List] = None,
325
+ sampling_rate: Optional[int] = 16000,
326
+ stopping_strategy: Optional[str] = "all_exhausted",
327
+ streaming = True,
328
+ **kwargs
329
+ ):
330
+
331
+ if len(dataset_names) != len(dataset_config_names):
332
+ raise ValueError(
333
+ f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
334
+ f" {len(dataset_config_names)} configs."
335
+ )
336
+
337
+ if splits is not None and len(splits) != len(dataset_names):
338
+ raise ValueError(
339
+ f"Ensure one train_split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
340
+ )
341
+
342
+ if text_column_names is not None and len(text_column_names) != len(dataset_names):
343
+ raise ValueError(
344
+ f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
345
+ f" {len(text_column_names)} text column names."
346
+ )
347
+
348
+ if audio_column_names is not None and len(audio_column_names) != len(dataset_names):
349
+ raise ValueError(
350
+ f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
351
+ f" {len(audio_column_names)} text column names."
352
+ )
353
+
354
+ splits = splits if splits is not None \
355
+ else ["train" for i in range(len(dataset_names))]
356
+
357
+ text_column_names = (
358
+ text_column_names if text_column_names is not None \
359
+ else [TEXT_COL_NAME for i in range(len(dataset_names))]
360
+ )
361
+
362
+ audio_column_names = (
363
+ audio_column_names if audio_column_names is not None \
364
+ else [AUDIO_COL_NAME for i in range(len(dataset_names))]
365
+ )
366
+
367
+ all_data_splits = []
368
+ # iterate over the datasets we want to interleave
369
+ for dset, cfgNm, splt, txtColNm, audColNm in zip(dataset_names,dataset_config_names,\
370
+ splits,text_column_names, audio_column_names):
371
+
372
+ dset_splits = [load_dataset(dset, cfgNm, split=c, streaming=streaming, **kwargs) \
373
+ for c in splt.split('+') if c != '-']
374
+
375
+ if streaming:
376
+ dset_splits = [ds if TEXT_COL_NAME in ds.features else ds.rename_column(txtColNm, TEXT_COL_NAME) \
377
+ for ds in dset_splits ]
378
+ dset_splits = [ds if AUDIO_COL_NAME in ds.features else ds.rename_column(audColNm, AUDIO_COL_NAME) \
379
+ for ds in dset_splits]
380
+
381
+ if len(dset_splits)>0 and sampling_rate != next(iter(dset_splits[0]))[AUDIO_COL_NAME]['sampling_rate']:
382
+ dset_splits = [ds.cast_column(AUDIO_COL_NAME, Audio(sampling_rate)) for ds in dset_splits]
383
+ else:
384
+
385
+ dset_splits = [ds if TEXT_COL_NAME in ds.column_names else ds.rename_column(txtColNm, TEXT_COL_NAME) \
386
+ for ds in dset_splits ]
387
+ dset_splits = [ds if AUDIO_COL_NAME in ds.column_names else ds.rename_column(audColNm, AUDIO_COL_NAME) \
388
+ for ds in dset_splits]
389
+
390
+ if len(dset_splits)>0 and sampling_rate != next(iter(dset_splits[0]))[AUDIO_COL_NAME]['sampling_rate']:
391
+ dset_splits = [ds.cast_column(AUDIO_COL_NAME, Audio(sampling_rate)) for ds in dset_splits]
392
+
393
+ cols2keep = set([AUDIO_COL_NAME, TEXT_COL_NAME])
394
+
395
+ dset_splits = [ds.remove_columns(set(ds.features.keys()) - cols2keep) for ds in dset_splits]
396
+
397
+ all_data_splits += dset_splits
398
+
399
+ return interleave_datasets(all_data_splits, stopping_strategy=stopping_strategy)
400
+
401
+ def main():
402
+ # 1. Parse input arguments
403
+ # See all possible arguments in src/transformers/training_args.py
404
+ # or by passing the --help flag to this script.
405
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
406
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
407
+
408
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
409
+ # If we pass only one argument to the script and it's the path to a json file,
410
+ # let's parse it to get our arguments.
411
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
412
+ else:
413
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
414
+
415
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
416
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
417
+ send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
418
+
419
+ # 2. Setup logging
420
+ logging.basicConfig(
421
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
422
+ datefmt="%m/%d/%Y %H:%M:%S",
423
+ handlers=[logging.StreamHandler(sys.stdout)],
424
+ )
425
+ log_level = training_args.get_process_log_level()
426
+ logger.setLevel(log_level)
427
+ datasets.utils.logging.set_verbosity(log_level)
428
+ transformers.utils.logging.set_verbosity(log_level)
429
+ transformers.utils.logging.enable_default_handler()
430
+ transformers.utils.logging.enable_explicit_format()
431
+
432
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
433
+
434
+ # Log on each process the small summary:
435
+ logger.warning(
436
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
437
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
438
+ )
439
+ logger.info(f"Training/evaluation parameters {training_args}")
440
+
441
+ # Set the verbosity to info of the Transformers logger (on main process only):
442
+ if is_main_process(training_args.local_rank):
443
+ transformers.utils.logging.set_verbosity_info()
444
+ logger.info("Training/evaluation parameters %s", training_args)
445
+
446
+ # 3. Detecting last checkpoint and eventually continue from last checkpoint
447
+ last_checkpoint = None
448
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
449
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
450
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
451
+ raise ValueError(
452
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
453
+ "Use --overwrite_output_dir to overcome."
454
+ )
455
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
456
+ logger.info(
457
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
458
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
459
+ )
460
+
461
+ # Set seed before initializing model.
462
+ set_seed(training_args.seed)
463
+
464
+ # 5. Load pretrained model, tokenizer, and feature extractor
465
+ #
466
+ # Distributed training:
467
+ # The .from_pretrained methods guarantee that only one local process can concurrently
468
+ config = AutoConfig.from_pretrained(
469
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
470
+ cache_dir=model_args.cache_dir,
471
+ revision=model_args.model_revision,
472
+ use_auth_token=True if model_args.use_auth_token else None,
473
+ )
474
+
475
+ config.update({ "forced_decoder_ids": model_args.forced_decoder_ids,
476
+ "suppress_tokens": model_args.suppress_tokens})
477
+
478
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
479
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
480
+ cache_dir=model_args.cache_dir,
481
+ revision=model_args.model_revision,
482
+ use_auth_token=True if model_args.use_auth_token else None,
483
+ )
484
+ tokenizer = AutoTokenizer.from_pretrained(
485
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
486
+ cache_dir=model_args.cache_dir,
487
+ use_fast=model_args.use_fast_tokenizer,
488
+ revision=model_args.model_revision,
489
+ use_auth_token=True if model_args.use_auth_token else None,
490
+ )
491
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
492
+ model_args.model_name_or_path,
493
+ config=config,
494
+ cache_dir=model_args.cache_dir,
495
+ revision=model_args.model_revision,
496
+ use_auth_token=True if model_args.use_auth_token else None,
497
+ )
498
+
499
+ model.config.use_cache = model_args.use_cache
500
+ model.config.dropout = model_args.dropout
501
+ model.config.attention_dropout = model_args.attention_dropout
502
+ if training_args.gradient_checkpointing:
503
+ model.gradient_checkpointing_enable()
504
+
505
+ if model.config.decoder_start_token_id is None:
506
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
507
+
508
+ # deprecated
509
+ #if model_args.freeze_feature_encoder:
510
+ # model.freeze_feature_encoder()
511
+
512
+ if model_args.freeze_encoder:
513
+ model.freeze_encoder()
514
+ model.model.encoder.gradient_checkpointing = False
515
+
516
+ if data_args.language is not None:
517
+ # We only need to set the task id when the language is specified (i.e. in a multilingual setting)
518
+ tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
519
+
520
+
521
+ # 4. Load dataset
522
+ raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
523
+
524
+ # if training_args.do_train:
525
+ # raw_datasets["train"] = load_streaming_dataset(
526
+ # data_args.dataset_name,
527
+ # data_args.dataset_config_name,
528
+ # split=data_args.train_split_name,
529
+ # use_auth_token=True if model_args.use_auth_token else None,
530
+ # )
531
+
532
+ # if training_args.do_eval:
533
+ # raw_datasets["eval"] = load_streaming_dataset(
534
+ # data_args.dataset_name,
535
+ # data_args.dataset_config_name,
536
+ # split=data_args.eval_split_name,
537
+ # use_auth_token=True if model_args.use_auth_token else None,
538
+ # )
539
+
540
+ if training_args.do_train:
541
+ raw_datasets["train"] = load_multiple_streaming_datasets(
542
+ dataset_names=data_args.dataset_name.split(","),
543
+ dataset_config_names=data_args.dataset_config_name.split(","),
544
+ splits = data_args.train_split_name.split(","),
545
+ text_column_names = data_args.text_column_name.split(","),
546
+ sampling_rate = feature_extractor.sampling_rate,
547
+ streaming=data_args.streaming,
548
+ use_auth_token=True if model_args.use_auth_token else None,
549
+ )
550
+
551
+ if training_args.do_eval:
552
+ raw_datasets["eval"] = load_multiple_streaming_datasets(
553
+ dataset_names=data_args.dataset_name.split(","),
554
+ dataset_config_names=data_args.dataset_config_name.split(","),
555
+ splits = data_args.eval_split_name.split(","),
556
+ text_column_names = data_args.text_column_name.split(","),
557
+ sampling_rate = feature_extractor.sampling_rate,
558
+ streaming=False,
559
+ use_auth_token=True if model_args.use_auth_token else None,
560
+ )
561
+
562
+ raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
563
+
564
+ if AUDIO_COL_NAME not in raw_datasets_features:
565
+ raise ValueError(
566
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
567
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
568
+ f"{', '.join(raw_datasets_features)}."
569
+ )
570
+
571
+ if TEXT_COL_NAME not in raw_datasets_features:
572
+ raise ValueError(
573
+ f"--text_column_name {TEXT_COL_NAME} not found in dataset. "
574
+ "Make sure to set `--text_column_name` to the the respective correct text columns."
575
+ )
576
+
577
+
578
+ # 6. Resample speech dataset if necessary
579
+ #dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
580
+ #if dataset_sampling_rate != feature_extractor.sampling_rate:
581
+ # raw_datasets = raw_datasets.cast_column(
582
+ # data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
583
+ # )
584
+
585
+ # 7. Preprocessing the datasets.
586
+ # We need to read the audio files as arrays and tokenize the targets.
587
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
588
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
589
+ audio_column_name = AUDIO_COL_NAME
590
+ text_column_name = TEXT_COL_NAME
591
+ model_input_name = feature_extractor.model_input_names[0]
592
+ do_lower_case = data_args.do_lower_case
593
+ do_remove_punctuation = data_args.do_remove_punctuation
594
+ normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
595
+
596
+ if data_args.max_train_samples is not None:
597
+ raw_datasets["train"] = (
598
+ raw_datasets["train"].take(data_args.max_train_samples)
599
+ if data_args.streaming
600
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
601
+ )
602
+
603
+ if data_args.max_eval_samples is not None:
604
+ raw_datasets["eval"] = (
605
+ raw_datasets["eval"].take(data_args.max_eval_samples)
606
+ if data_args.streaming
607
+ else raw_datasets["eval"].select(range(data_args.max_eval_samples))
608
+ )
609
+
610
+ def prepare_dataset(batch):
611
+ # process audio
612
+ sample = batch[audio_column_name]
613
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
614
+ # process audio length
615
+ batch[model_input_name] = inputs.get(model_input_name)[0]
616
+ batch["input_length"] = len(sample["array"])
617
+
618
+ # process targets
619
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
620
+ if do_remove_punctuation:
621
+ input_str = normalizer(input_str).strip()
622
+ batch["labels"] = tokenizer(input_str).input_ids
623
+ return batch
624
+
625
+ with training_args.main_process_first(desc="dataset map pre-processing"):
626
+ vectorized_datasets = raw_datasets.map(
627
+ prepare_dataset,
628
+ remove_columns=raw_datasets_features,
629
+ num_proc=training_args.dataloader_num_workers if training_args.dataloader_num_workers else 1
630
+ ).with_format("torch")
631
+
632
+ if training_args.do_train and data_args.streaming:
633
+ # manually shuffle if streaming (done by the trainer for non-streaming)
634
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
635
+ buffer_size=data_args.shuffle_buffer_size,
636
+ seed=training_args.seed,
637
+ )
638
+
639
+ # filter training data that is shorter than min_input_length or longer than
640
+ # max_input_length
641
+ def is_audio_in_length_range(length):
642
+ return min_input_length < length < max_input_length
643
+
644
+ if training_args.do_train:
645
+ vectorized_datasets["train"] = vectorized_datasets["train"].filter(
646
+ is_audio_in_length_range,
647
+ input_columns=["input_length"],
648
+ )
649
+
650
+ # 8. Load Metric
651
+ metric = evaluate.load("wer")
652
+ do_normalize_eval = data_args.do_normalize_eval
653
+
654
+ def compute_metrics(pred):
655
+ pred_ids = pred.predictions
656
+
657
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
658
+
659
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
660
+ # we do not want to group tokens when computing the metrics
661
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
662
+
663
+ if do_normalize_eval:
664
+ pred_str = [normalizer(pred) for pred in pred_str]
665
+ label_str = [normalizer(label) for label in label_str]
666
+ # filtering step to only evaluate the samples that correspond to non-zero references:
667
+ pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]
668
+ label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]
669
+
670
+ wer = 100 * metric.compute(predictions=pred_str, references=label_str)
671
+
672
+ return {"wer": wer}
673
+
674
+ # 9. Create a single speech processor
675
+ if is_main_process(training_args.local_rank):
676
+ # save feature extractor, tokenizer and config
677
+ feature_extractor.save_pretrained(training_args.output_dir)
678
+ tokenizer.save_pretrained(training_args.output_dir)
679
+ config.save_pretrained(training_args.output_dir)
680
+
681
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
682
+
683
+ # 10. Define data collator
684
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
685
+ processor=processor,
686
+ decoder_start_token_id=model.config.decoder_start_token_id,
687
+ )
688
+
689
+ # 11. Configure Trainer
690
+ # Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
691
+ # Only required for streaming: Trainer automatically shuffles non-streaming datasets
692
+ class ShuffleCallback(TrainerCallback):
693
+ def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
694
+ if isinstance(train_dataloader.dataset, IterableDatasetShard):
695
+ pass # set_epoch() is handled by the Trainer
696
+ elif isinstance(train_dataloader.dataset, IterableDataset):
697
+ train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
698
+
699
+ # Initialize Trainer
700
+ trainer = Seq2SeqTrainer(
701
+ model=model,
702
+ args=training_args,
703
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
704
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
705
+ tokenizer=feature_extractor,
706
+ data_collator=data_collator,
707
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
708
+ callbacks=[ShuffleCallback()] if data_args.streaming else None,
709
+ )
710
+
711
+ # 12. Training
712
+ if training_args.do_train:
713
+ checkpoint = None
714
+ if training_args.resume_from_checkpoint is not None:
715
+ checkpoint = training_args.resume_from_checkpoint
716
+ elif last_checkpoint is not None:
717
+ checkpoint = last_checkpoint
718
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
719
+ trainer.save_model() # Saves the feature extractor too for easy upload
720
+
721
+ metrics = train_result.metrics
722
+ if data_args.max_train_samples:
723
+ metrics["train_samples"] = data_args.max_train_samples
724
+ trainer.log_metrics("train", metrics)
725
+ trainer.save_metrics("train", metrics)
726
+ trainer.save_state()
727
+
728
+ # 13. Evaluation
729
+ results = {}
730
+ if training_args.do_eval:
731
+ logger.info("*** Evaluate ***")
732
+ metrics = trainer.evaluate(
733
+ metric_key_prefix="eval",
734
+ max_length=training_args.generation_max_length,
735
+ num_beams=training_args.generation_num_beams,
736
+ )
737
+ if data_args.max_eval_samples:
738
+ metrics["eval_samples"] = data_args.max_eval_samples
739
+
740
+ trainer.log_metrics("eval", metrics)
741
+ trainer.save_metrics("eval", metrics)
742
+
743
+ # 14. Write Training Stats
744
+ kwargs = {
745
+ "finetuned_from": model_args.model_name_or_path,
746
+ "tasks": "automatic-speech-recognition",
747
+ "tags": "whisper-event",
748
+ }
749
+ if data_args.dataset_name is not None:
750
+ kwargs["dataset_tags"] = data_args.dataset_name
751
+ if data_args.dataset_config_name is not None:
752
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
753
+ else:
754
+ kwargs["dataset"] = data_args.dataset_name
755
+ if "common_voice" in data_args.dataset_name:
756
+ kwargs["language"] = data_args.dataset_config_name[:2]
757
+ if model_args.model_index_name is not None:
758
+ kwargs["model_name"] = model_args.model_index_name
759
+
760
+ if training_args.push_to_hub:
761
+ trainer.push_to_hub(**kwargs)
762
+ else:
763
+ trainer.create_model_card(**kwargs)
764
+
765
+ return results
766
+
767
+
768
+ if __name__ == "__main__":
769
+ main()