File size: 2,922 Bytes
cc426c6 6054c7b cc426c6 6054c7b cc426c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: bookbot/distil-ast-audioset
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distil-ast-audioset-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 0.92
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distil-ast-audioset-finetuned-gtzan
This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co./bookbot/distil-ast-audioset) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3742
- Accuracy: 0.92
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0362 | 1.0 | 113 | 0.8029 | 0.75 |
| 0.7068 | 2.0 | 226 | 0.4494 | 0.86 |
| 0.3458 | 3.0 | 339 | 0.5926 | 0.78 |
| 0.1416 | 4.0 | 452 | 0.5162 | 0.89 |
| 0.1134 | 5.0 | 565 | 0.6216 | 0.84 |
| 0.003 | 6.0 | 678 | 0.5221 | 0.9 |
| 0.3177 | 7.0 | 791 | 0.3742 | 0.92 |
| 0.0002 | 8.0 | 904 | 0.5134 | 0.91 |
| 0.0022 | 9.0 | 1017 | 0.6814 | 0.86 |
| 0.0002 | 10.0 | 1130 | 0.5605 | 0.9 |
| 0.0001 | 11.0 | 1243 | 0.4976 | 0.9 |
| 0.0105 | 12.0 | 1356 | 0.5841 | 0.89 |
| 0.0001 | 13.0 | 1469 | 0.4664 | 0.89 |
| 0.0 | 14.0 | 1582 | 0.5755 | 0.89 |
| 0.0 | 15.0 | 1695 | 0.4913 | 0.9 |
| 0.0001 | 16.0 | 1808 | 0.4877 | 0.9 |
| 0.0 | 17.0 | 1921 | 0.4855 | 0.9 |
| 0.0 | 18.0 | 2034 | 0.4859 | 0.9 |
| 0.0 | 19.0 | 2147 | 0.4862 | 0.9 |
| 0.0 | 20.0 | 2260 | 0.4865 | 0.9 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|