jssky commited on
Commit
28311c7
·
verified ·
1 Parent(s): 84f9b92

End of training

Browse files
Files changed (2) hide show
  1. README.md +161 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: heegyu/WizardVicuna-open-llama-3b-v2
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: e13d175c-1f82-4e2e-a88f-a57e6520aa3c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.6.0`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: heegyu/WizardVicuna-open-llama-3b-v2
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 57074409758da653_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/57074409758da653_train_data.json
32
+ type:
33
+ field_input: answer
34
+ field_instruction: problem
35
+ field_output: generated_solution
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: null
43
+ eval_max_new_tokens: 128
44
+ eval_table_size: null
45
+ evals_per_epoch: 4
46
+ flash_attention: false
47
+ fp16: false
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 8
51
+ gradient_checkpointing: false
52
+ group_by_length: true
53
+ hub_model_id: jssky/e13d175c-1f82-4e2e-a88f-a57e6520aa3c
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0002
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 16
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 8
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_grad_norm: 1.0
70
+ max_memory:
71
+ 0: 75GB
72
+ max_steps: 1500
73
+ micro_batch_size: 2
74
+ mlflow_experiment_name: /tmp/57074409758da653_train_data.json
75
+ model_type: AutoModelForCausalLM
76
+ num_epochs: 1
77
+ optim_args:
78
+ adam_beta1: 0.9
79
+ adam_beta2: 0.95
80
+ adam_epsilon: 1e-5
81
+ optimizer: adamw_bnb_8bit
82
+ output_dir: miner_id_24
83
+ pad_to_sequence_len: true
84
+ resume_from_checkpoint: null
85
+ s2_attention: null
86
+ sample_packing: false
87
+ saves_per_epoch: 4
88
+ sequence_len: 1024
89
+ special_tokens:
90
+ pad_token: </s>
91
+ strict: false
92
+ tf32: true
93
+ tokenizer_type: AutoTokenizer
94
+ train_on_inputs: false
95
+ trust_remote_code: true
96
+ val_set_size: 0.05
97
+ wandb_entity: null
98
+ wandb_mode: online
99
+ wandb_name: e948353a-5f0d-44d7-bd4a-3162ddbff22a
100
+ wandb_project: Gradients-On-Demand
101
+ wandb_run: your_name
102
+ wandb_runid: e948353a-5f0d-44d7-bd4a-3162ddbff22a
103
+ warmup_steps: 10
104
+ weight_decay: 0.0
105
+ xformers_attention: null
106
+
107
+ ```
108
+
109
+ </details><br>
110
+
111
+ # e13d175c-1f82-4e2e-a88f-a57e6520aa3c
112
+
113
+ This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset.
114
+ It achieves the following results on the evaluation set:
115
+ - Loss: 0.5028
116
+
117
+ ## Model description
118
+
119
+ More information needed
120
+
121
+ ## Intended uses & limitations
122
+
123
+ More information needed
124
+
125
+ ## Training and evaluation data
126
+
127
+ More information needed
128
+
129
+ ## Training procedure
130
+
131
+ ### Training hyperparameters
132
+
133
+ The following hyperparameters were used during training:
134
+ - learning_rate: 0.0002
135
+ - train_batch_size: 2
136
+ - eval_batch_size: 2
137
+ - seed: 42
138
+ - gradient_accumulation_steps: 8
139
+ - total_train_batch_size: 16
140
+ - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
141
+ - lr_scheduler_type: cosine
142
+ - lr_scheduler_warmup_steps: 10
143
+ - training_steps: 1176
144
+
145
+ ### Training results
146
+
147
+ | Training Loss | Epoch | Step | Validation Loss |
148
+ |:-------------:|:------:|:----:|:---------------:|
149
+ | 0.5154 | 0.2501 | 294 | 0.5553 |
150
+ | 0.4937 | 0.5002 | 588 | 0.5242 |
151
+ | 0.4954 | 0.7502 | 882 | 0.5072 |
152
+ | 0.8149 | 1.0006 | 1176 | 0.5028 |
153
+
154
+
155
+ ### Framework versions
156
+
157
+ - PEFT 0.14.0
158
+ - Transformers 4.46.3
159
+ - Pytorch 2.5.1+cu124
160
+ - Datasets 3.1.0
161
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b05a10870136d06e52b6e0c997aa99c28ce1c9e0263eafce36bac70d7c22a57a
3
+ size 50982842