--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: datasets-jsonl/smut-bts-responses-881.jsonl ds_type: json type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# lora-out This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co./NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8373 | 0.02 | 1 | 1.8334 | | 1.738 | 0.26 | 17 | 1.7546 | | 1.704 | 0.51 | 34 | 1.7389 | | 1.6762 | 0.77 | 51 | 1.7410 | | 1.5981 | 1.02 | 68 | 1.7487 | | 1.5593 | 1.26 | 85 | 1.7956 | | 1.4415 | 1.51 | 102 | 1.7860 | | 1.6098 | 1.77 | 119 | 1.8020 | | 1.5458 | 2.02 | 136 | 1.8526 | | 1.4358 | 2.26 | 153 | 1.8557 | | 1.4608 | 2.51 | 170 | 1.8844 | | 1.4465 | 2.77 | 187 | 1.8980 | | 1.3986 | 3.02 | 204 | 1.8998 | | 1.5333 | 3.26 | 221 | 1.9195 | | 1.3554 | 3.51 | 238 | 1.9184 | | 1.3287 | 3.77 | 255 | 1.9196 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0