add files and evaluate
Browse files- README.md +43 -0
- added_tokens.json +1 -0
- all_results.json +14 -0
- eval.py +125 -0
- eval_results.json +9 -0
- log_mozilla-foundation_common_voice_8_0_de_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_8_0_de_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_de_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_de_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_8_0_de_test_eval_results.txt +2 -0
- preprocessor_config.json +9 -0
- run.sh +33 -0
- run_speech_recognition_ctc.py +737 -0
- special_tokens_map.json +1 -0
- speech-recognition-community-v2_dev_data_de_validation_eval_results.txt +2 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +1798 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- de
|
9 |
+
- robust-speech-event
|
10 |
+
datasets:
|
11 |
+
- mozilla-foundation/common_voice_8_0
|
12 |
+
model-index:
|
13 |
+
- name: XLS-R-1B - German
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice 8
|
20 |
+
type: mozilla-foundation/common_voice_8_0
|
21 |
+
args: de
|
22 |
+
metrics:
|
23 |
+
- name: Test WER
|
24 |
+
type: wer
|
25 |
+
value: 11.37
|
26 |
+
- name: Test CER
|
27 |
+
type: cer
|
28 |
+
value: 2.89
|
29 |
+
- task:
|
30 |
+
name: Automatic Speech Recognition
|
31 |
+
type: automatic-speech-recognition
|
32 |
+
dataset:
|
33 |
+
name: Robust Speech Event - Dev Data
|
34 |
+
type: speech-recognition-community-v2/dev_data
|
35 |
+
args: de
|
36 |
+
metrics:
|
37 |
+
- name: Dev WER
|
38 |
+
type: wer
|
39 |
+
value: 31.16
|
40 |
+
- name: Dev CER
|
41 |
+
type: cer
|
42 |
+
value: 13.41
|
43 |
+
---
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 191, "</s>": 192}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_loss": 0.11697383970022202,
|
4 |
+
"eval_runtime": 1050.8284,
|
5 |
+
"eval_samples": 16007,
|
6 |
+
"eval_samples_per_second": 15.233,
|
7 |
+
"eval_steps_per_second": 1.904,
|
8 |
+
"eval_wer": 0.1117051786299574,
|
9 |
+
"train_loss": 0.27212924943281636,
|
10 |
+
"train_runtime": 112594.4054,
|
11 |
+
"train_samples": 436168,
|
12 |
+
"train_samples_per_second": 7.748,
|
13 |
+
"train_steps_per_second": 0.242
|
14 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
def normalize_text(text: str) -> str:
|
52 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
53 |
+
|
54 |
+
# From https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german.
|
55 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
56 |
+
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
57 |
+
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
58 |
+
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
59 |
+
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
60 |
+
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
61 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
62 |
+
|
63 |
+
return " ".join(text.split())
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# # for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=0)
|
82 |
+
|
83 |
+
# map function to decode audio
|
84 |
+
def map_to_pred(batch):
|
85 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
86 |
+
|
87 |
+
batch["prediction"] = prediction["text"]
|
88 |
+
batch["target"] = normalize_text(batch["sentence"])
|
89 |
+
return batch
|
90 |
+
|
91 |
+
# run inference on all examples
|
92 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
93 |
+
|
94 |
+
# compute and log_results
|
95 |
+
# do not change function below
|
96 |
+
log_results(result, args)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
parser = argparse.ArgumentParser()
|
101 |
+
|
102 |
+
parser.add_argument(
|
103 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
122 |
+
)
|
123 |
+
args = parser.parse_args()
|
124 |
+
|
125 |
+
main(args)
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"eval_loss": 0.11697383970022202,
|
4 |
+
"eval_runtime": 1050.8284,
|
5 |
+
"eval_samples": 16007,
|
6 |
+
"eval_samples_per_second": 15.233,
|
7 |
+
"eval_steps_per_second": 1.904,
|
8 |
+
"eval_wer": 0.1117051786299574
|
9 |
+
}
|
log_mozilla-foundation_common_voice_8_0_de_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_8_0_de_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_de_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_de_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_8_0_de_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.11368385114373507
|
2 |
+
CER: 0.028929306965087716
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
run.sh
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="mozilla-foundation/common_voice_8_0" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
4 |
+
--dataset_config_name="de" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="2" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7e-5" \
|
12 |
+
--lr_scheduler_type="cosine" \
|
13 |
+
--warmup_steps="10" \
|
14 |
+
--length_column_name="input_length" \
|
15 |
+
--evaluation_strategy="steps" \
|
16 |
+
--text_column_name="sentence" \
|
17 |
+
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – \
|
18 |
+
--save_steps="1500" \
|
19 |
+
--eval_steps="1500" \
|
20 |
+
--logging_steps="100" \
|
21 |
+
--save_total_limit="2" \
|
22 |
+
--freeze_feature_encoder \
|
23 |
+
--attention_dropout="0.15" \
|
24 |
+
--hidden_dropout="0.15" \
|
25 |
+
--mask_time_prob="0.15" \
|
26 |
+
--mask_time_length="10" \
|
27 |
+
--mask_feature_prob="0.35" \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--gradient_checkpointing \
|
30 |
+
--use_auth_token \
|
31 |
+
--fp16 \
|
32 |
+
--group_by_length \
|
33 |
+
--do_train --do_eval
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train+validation'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
)
|
322 |
+
|
323 |
+
# take union of all unique characters in each dataset
|
324 |
+
vocab_set = functools.reduce(
|
325 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
326 |
+
)
|
327 |
+
|
328 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
329 |
+
|
330 |
+
# replace white space with delimiter token
|
331 |
+
if word_delimiter_token is not None:
|
332 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
333 |
+
del vocab_dict[" "]
|
334 |
+
|
335 |
+
# add unk and pad token
|
336 |
+
if unk_token is not None:
|
337 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
338 |
+
|
339 |
+
if pad_token is not None:
|
340 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
341 |
+
|
342 |
+
return vocab_dict
|
343 |
+
|
344 |
+
|
345 |
+
def main():
|
346 |
+
# See all possible arguments in src/transformers/training_args.py
|
347 |
+
# or by passing the --help flag to this script.
|
348 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
349 |
+
|
350 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
351 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
352 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
353 |
+
# let's parse it to get our arguments.
|
354 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
355 |
+
else:
|
356 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
357 |
+
|
358 |
+
# Detecting last checkpoint.
|
359 |
+
last_checkpoint = None
|
360 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
361 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
362 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
363 |
+
raise ValueError(
|
364 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
365 |
+
"Use --overwrite_output_dir to overcome."
|
366 |
+
)
|
367 |
+
elif last_checkpoint is not None:
|
368 |
+
logger.info(
|
369 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
370 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
371 |
+
)
|
372 |
+
|
373 |
+
# Setup logging
|
374 |
+
logging.basicConfig(
|
375 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
376 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
377 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
378 |
+
)
|
379 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
380 |
+
|
381 |
+
# Log on each process the small summary:
|
382 |
+
logger.warning(
|
383 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
384 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
385 |
+
)
|
386 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
387 |
+
if is_main_process(training_args.local_rank):
|
388 |
+
transformers.utils.logging.set_verbosity_info()
|
389 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
390 |
+
|
391 |
+
# Set seed before initializing model.
|
392 |
+
set_seed(training_args.seed)
|
393 |
+
|
394 |
+
# 1. First, let's load the dataset
|
395 |
+
raw_datasets = DatasetDict()
|
396 |
+
|
397 |
+
if training_args.do_train:
|
398 |
+
raw_datasets["train"] = load_dataset(
|
399 |
+
data_args.dataset_name,
|
400 |
+
data_args.dataset_config_name,
|
401 |
+
split=data_args.train_split_name,
|
402 |
+
use_auth_token=data_args.use_auth_token,
|
403 |
+
)
|
404 |
+
|
405 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
406 |
+
raise ValueError(
|
407 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
408 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
409 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
410 |
+
)
|
411 |
+
|
412 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
413 |
+
raise ValueError(
|
414 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
415 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
416 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
417 |
+
)
|
418 |
+
|
419 |
+
if data_args.max_train_samples is not None:
|
420 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
421 |
+
|
422 |
+
if training_args.do_eval:
|
423 |
+
raw_datasets["eval"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.eval_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.max_eval_samples is not None:
|
431 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
432 |
+
|
433 |
+
# 2. We remove some special characters from the datasets
|
434 |
+
# that make training complicated and do not help in transcribing the speech
|
435 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
+
# that could be easily picked up by the model
|
437 |
+
chars_to_ignore_regex = (
|
438 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
+
)
|
440 |
+
text_column_name = data_args.text_column_name
|
441 |
+
|
442 |
+
def remove_special_characters(batch):
|
443 |
+
if chars_to_ignore_regex is not None:
|
444 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
445 |
+
else:
|
446 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
447 |
+
return batch
|
448 |
+
|
449 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
450 |
+
raw_datasets = raw_datasets.map(
|
451 |
+
remove_special_characters,
|
452 |
+
remove_columns=[text_column_name],
|
453 |
+
desc="remove special characters from datasets",
|
454 |
+
)
|
455 |
+
|
456 |
+
# save special tokens for tokenizer
|
457 |
+
word_delimiter_token = data_args.word_delimiter_token
|
458 |
+
unk_token = data_args.unk_token
|
459 |
+
pad_token = data_args.pad_token
|
460 |
+
|
461 |
+
# 3. Next, let's load the config as we might need it to create
|
462 |
+
# the tokenizer
|
463 |
+
# load config
|
464 |
+
config = AutoConfig.from_pretrained(
|
465 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
466 |
+
)
|
467 |
+
|
468 |
+
# 4. Next, if no tokenizer file is defined,
|
469 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
470 |
+
# the training and evaluation datasets
|
471 |
+
# We need to make sure that only first rank saves vocabulary
|
472 |
+
# make sure all processes wait until vocab is created
|
473 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
474 |
+
tokenizer_kwargs = {}
|
475 |
+
if tokenizer_name_or_path is None:
|
476 |
+
# save vocab in training output dir
|
477 |
+
tokenizer_name_or_path = training_args.output_dir
|
478 |
+
|
479 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
480 |
+
|
481 |
+
with training_args.main_process_first():
|
482 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
483 |
+
os.remove(vocab_file)
|
484 |
+
|
485 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
486 |
+
if not os.path.isfile(vocab_file):
|
487 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
488 |
+
vocab_dict = create_vocabulary_from_data(
|
489 |
+
raw_datasets,
|
490 |
+
word_delimiter_token=word_delimiter_token,
|
491 |
+
unk_token=unk_token,
|
492 |
+
pad_token=pad_token,
|
493 |
+
)
|
494 |
+
|
495 |
+
# save vocab dict to be loaded into tokenizer
|
496 |
+
with open(vocab_file, "w") as file:
|
497 |
+
json.dump(vocab_dict, file)
|
498 |
+
|
499 |
+
# if tokenizer has just been created
|
500 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
501 |
+
tokenizer_kwargs = {
|
502 |
+
"config": config if config.tokenizer_class is not None else None,
|
503 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
504 |
+
"unk_token": unk_token,
|
505 |
+
"pad_token": pad_token,
|
506 |
+
"word_delimiter_token": word_delimiter_token,
|
507 |
+
}
|
508 |
+
|
509 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
510 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
511 |
+
# one local process can concurrently download model & vocab.
|
512 |
+
|
513 |
+
# load feature_extractor and tokenizer
|
514 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
515 |
+
tokenizer_name_or_path,
|
516 |
+
use_auth_token=data_args.use_auth_token,
|
517 |
+
**tokenizer_kwargs,
|
518 |
+
)
|
519 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
520 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
521 |
+
)
|
522 |
+
|
523 |
+
# adapt config
|
524 |
+
config.update(
|
525 |
+
{
|
526 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
527 |
+
"attention_dropout": model_args.attention_dropout,
|
528 |
+
"hidden_dropout": model_args.hidden_dropout,
|
529 |
+
"final_dropout": model_args.final_dropout,
|
530 |
+
"mask_time_prob": model_args.mask_time_prob,
|
531 |
+
"mask_time_length": model_args.mask_time_length,
|
532 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
533 |
+
"mask_feature_length": model_args.mask_feature_length,
|
534 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
535 |
+
"layerdrop": model_args.layerdrop,
|
536 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
537 |
+
"pad_token_id": tokenizer.pad_token_id,
|
538 |
+
"vocab_size": len(tokenizer),
|
539 |
+
"activation_dropout": model_args.activation_dropout,
|
540 |
+
}
|
541 |
+
)
|
542 |
+
|
543 |
+
# create model
|
544 |
+
model = AutoModelForCTC.from_pretrained(
|
545 |
+
model_args.model_name_or_path,
|
546 |
+
cache_dir=model_args.cache_dir,
|
547 |
+
config=config,
|
548 |
+
use_auth_token=data_args.use_auth_token,
|
549 |
+
)
|
550 |
+
|
551 |
+
# freeze encoder
|
552 |
+
if model_args.freeze_feature_encoder:
|
553 |
+
model.freeze_feature_encoder()
|
554 |
+
|
555 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
556 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
557 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
558 |
+
# via the `feature_extractor`
|
559 |
+
|
560 |
+
# make sure that dataset decodes audio with correct sampling rate
|
561 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
562 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
563 |
+
raw_datasets = raw_datasets.cast_column(
|
564 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
565 |
+
)
|
566 |
+
|
567 |
+
# derive max & min input length for sample rate & max duration
|
568 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
569 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
570 |
+
audio_column_name = data_args.audio_column_name
|
571 |
+
num_workers = data_args.preprocessing_num_workers
|
572 |
+
|
573 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
574 |
+
phoneme_language = data_args.phoneme_language
|
575 |
+
|
576 |
+
# Preprocessing the datasets.
|
577 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
578 |
+
def prepare_dataset(batch):
|
579 |
+
# load audio
|
580 |
+
sample = batch[audio_column_name]
|
581 |
+
|
582 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
583 |
+
batch["input_values"] = inputs.input_values[0]
|
584 |
+
batch["input_length"] = len(batch["input_values"])
|
585 |
+
|
586 |
+
# encode targets
|
587 |
+
additional_kwargs = {}
|
588 |
+
if phoneme_language is not None:
|
589 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
590 |
+
|
591 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
592 |
+
return batch
|
593 |
+
|
594 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
595 |
+
vectorized_datasets = raw_datasets.map(
|
596 |
+
prepare_dataset,
|
597 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
598 |
+
num_proc=num_workers,
|
599 |
+
desc="preprocess datasets",
|
600 |
+
)
|
601 |
+
|
602 |
+
def is_audio_in_length_range(length):
|
603 |
+
return length > min_input_length and length < max_input_length
|
604 |
+
|
605 |
+
# filter data that is shorter than min_input_length
|
606 |
+
vectorized_datasets = vectorized_datasets.filter(
|
607 |
+
is_audio_in_length_range,
|
608 |
+
num_proc=num_workers,
|
609 |
+
input_columns=["input_length"],
|
610 |
+
)
|
611 |
+
|
612 |
+
# 7. Next, we can prepare the training.
|
613 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
614 |
+
# instantiate a data collator and the trainer
|
615 |
+
|
616 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
617 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
618 |
+
|
619 |
+
# for large datasets it is advised to run the preprocessing on a
|
620 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
621 |
+
# be a timeout when running the script in distributed mode.
|
622 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
623 |
+
# cached dataset
|
624 |
+
if data_args.preprocessing_only:
|
625 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
626 |
+
return
|
627 |
+
|
628 |
+
def compute_metrics(pred):
|
629 |
+
pred_logits = pred.predictions
|
630 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
631 |
+
|
632 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
633 |
+
|
634 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
635 |
+
# we do not want to group tokens when computing the metrics
|
636 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
637 |
+
|
638 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
639 |
+
|
640 |
+
return metrics
|
641 |
+
|
642 |
+
# Now save everything to be able to create a single processor later
|
643 |
+
if is_main_process(training_args.local_rank):
|
644 |
+
# save feature extractor, tokenizer and config
|
645 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
646 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
647 |
+
config.save_pretrained(training_args.output_dir)
|
648 |
+
|
649 |
+
try:
|
650 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
651 |
+
except (OSError, KeyError):
|
652 |
+
warnings.warn(
|
653 |
+
"Loading a processor from a feature extractor config that does not"
|
654 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
655 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
656 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
657 |
+
FutureWarning,
|
658 |
+
)
|
659 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
660 |
+
|
661 |
+
# Instantiate custom data collator
|
662 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
663 |
+
|
664 |
+
# Initialize Trainer
|
665 |
+
trainer = Trainer(
|
666 |
+
model=model,
|
667 |
+
data_collator=data_collator,
|
668 |
+
args=training_args,
|
669 |
+
compute_metrics=compute_metrics,
|
670 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
671 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
672 |
+
tokenizer=feature_extractor,
|
673 |
+
)
|
674 |
+
|
675 |
+
# 8. Finally, we can start training
|
676 |
+
|
677 |
+
# Training
|
678 |
+
if training_args.do_train:
|
679 |
+
|
680 |
+
# use last checkpoint if exist
|
681 |
+
if last_checkpoint is not None:
|
682 |
+
checkpoint = last_checkpoint
|
683 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
684 |
+
checkpoint = model_args.model_name_or_path
|
685 |
+
else:
|
686 |
+
checkpoint = None
|
687 |
+
|
688 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
689 |
+
trainer.save_model()
|
690 |
+
|
691 |
+
metrics = train_result.metrics
|
692 |
+
max_train_samples = (
|
693 |
+
data_args.max_train_samples
|
694 |
+
if data_args.max_train_samples is not None
|
695 |
+
else len(vectorized_datasets["train"])
|
696 |
+
)
|
697 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
698 |
+
|
699 |
+
trainer.log_metrics("train", metrics)
|
700 |
+
trainer.save_metrics("train", metrics)
|
701 |
+
trainer.save_state()
|
702 |
+
|
703 |
+
# Evaluation
|
704 |
+
results = {}
|
705 |
+
if training_args.do_eval:
|
706 |
+
logger.info("*** Evaluate ***")
|
707 |
+
metrics = trainer.evaluate()
|
708 |
+
max_eval_samples = (
|
709 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
710 |
+
)
|
711 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
712 |
+
|
713 |
+
trainer.log_metrics("eval", metrics)
|
714 |
+
trainer.save_metrics("eval", metrics)
|
715 |
+
|
716 |
+
# Write model card and (optionally) push to hub
|
717 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
718 |
+
kwargs = {
|
719 |
+
"finetuned_from": model_args.model_name_or_path,
|
720 |
+
"tasks": "speech-recognition",
|
721 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
722 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
723 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
724 |
+
}
|
725 |
+
if "common_voice" in data_args.dataset_name:
|
726 |
+
kwargs["language"] = config_name
|
727 |
+
|
728 |
+
if training_args.push_to_hub:
|
729 |
+
trainer.push_to_hub(**kwargs)
|
730 |
+
else:
|
731 |
+
trainer.create_model_card(**kwargs)
|
732 |
+
|
733 |
+
return results
|
734 |
+
|
735 |
+
|
736 |
+
if __name__ == "__main__":
|
737 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
speech-recognition-community-v2_dev_data_de_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.31160744887467157
|
2 |
+
CER: 0.1341142698398
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"train_loss": 0.27212924943281636,
|
4 |
+
"train_runtime": 112594.4054,
|
5 |
+
"train_samples": 436168,
|
6 |
+
"train_samples_per_second": 7.748,
|
7 |
+
"train_steps_per_second": 0.242
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9809064397204748,
|
5 |
+
"global_step": 27000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 6.999815761247666e-05,
|
13 |
+
"loss": 4.5119,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 6.999169171843241e-05,
|
19 |
+
"loss": 2.6638,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 6.998057503298084e-05,
|
25 |
+
"loss": 1.183,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.03,
|
30 |
+
"learning_rate": 6.996480903365516e-05,
|
31 |
+
"loss": 0.7325,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.04,
|
36 |
+
"learning_rate": 6.99443958159349e-05,
|
37 |
+
"loss": 0.5966,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"learning_rate": 6.991933809296747e-05,
|
43 |
+
"loss": 0.5263,
|
44 |
+
"step": 600
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.05,
|
48 |
+
"learning_rate": 6.988963919520753e-05,
|
49 |
+
"loss": 0.5068,
|
50 |
+
"step": 700
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.06,
|
54 |
+
"learning_rate": 6.985530306997431e-05,
|
55 |
+
"loss": 0.4704,
|
56 |
+
"step": 800
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.07,
|
60 |
+
"learning_rate": 6.981633428092705e-05,
|
61 |
+
"loss": 0.4521,
|
62 |
+
"step": 900
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.07,
|
66 |
+
"learning_rate": 6.977273800745834e-05,
|
67 |
+
"loss": 0.4439,
|
68 |
+
"step": 1000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.08,
|
72 |
+
"learning_rate": 6.972452004400577e-05,
|
73 |
+
"loss": 0.421,
|
74 |
+
"step": 1100
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.09,
|
78 |
+
"learning_rate": 6.96716867992818e-05,
|
79 |
+
"loss": 0.4105,
|
80 |
+
"step": 1200
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.1,
|
84 |
+
"learning_rate": 6.961424529542192e-05,
|
85 |
+
"loss": 0.3998,
|
86 |
+
"step": 1300
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1,
|
90 |
+
"learning_rate": 6.955220316705135e-05,
|
91 |
+
"loss": 0.3971,
|
92 |
+
"step": 1400
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.11,
|
96 |
+
"learning_rate": 6.948556866027035e-05,
|
97 |
+
"loss": 0.3958,
|
98 |
+
"step": 1500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.11,
|
102 |
+
"eval_loss": 0.26585060358047485,
|
103 |
+
"eval_runtime": 1119.616,
|
104 |
+
"eval_samples_per_second": 14.297,
|
105 |
+
"eval_steps_per_second": 1.787,
|
106 |
+
"eval_wer": 0.2537555992570742,
|
107 |
+
"step": 1500
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.12,
|
111 |
+
"learning_rate": 6.941435063155818e-05,
|
112 |
+
"loss": 0.3828,
|
113 |
+
"step": 1600
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.12,
|
117 |
+
"learning_rate": 6.933855854659593e-05,
|
118 |
+
"loss": 0.3852,
|
119 |
+
"step": 1700
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.13,
|
123 |
+
"learning_rate": 6.925820247900854e-05,
|
124 |
+
"loss": 0.3749,
|
125 |
+
"step": 1800
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.14,
|
129 |
+
"learning_rate": 6.917329310902582e-05,
|
130 |
+
"loss": 0.3853,
|
131 |
+
"step": 1900
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.15,
|
135 |
+
"learning_rate": 6.90838417220629e-05,
|
136 |
+
"loss": 0.3692,
|
137 |
+
"step": 2000
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.15,
|
141 |
+
"learning_rate": 6.898986020722038e-05,
|
142 |
+
"loss": 0.3676,
|
143 |
+
"step": 2100
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.16,
|
147 |
+
"learning_rate": 6.889136105570403e-05,
|
148 |
+
"loss": 0.3697,
|
149 |
+
"step": 2200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.17,
|
153 |
+
"learning_rate": 6.878835735916458e-05,
|
154 |
+
"loss": 0.3608,
|
155 |
+
"step": 2300
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.18,
|
159 |
+
"learning_rate": 6.868086280795778e-05,
|
160 |
+
"loss": 0.3515,
|
161 |
+
"step": 2400
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.18,
|
165 |
+
"learning_rate": 6.85688916893247e-05,
|
166 |
+
"loss": 0.3383,
|
167 |
+
"step": 2500
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.19,
|
171 |
+
"learning_rate": 6.845245888549281e-05,
|
172 |
+
"loss": 0.3421,
|
173 |
+
"step": 2600
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.2,
|
177 |
+
"learning_rate": 6.833157987169802e-05,
|
178 |
+
"loss": 0.3454,
|
179 |
+
"step": 2700
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.21,
|
183 |
+
"learning_rate": 6.820627071412778e-05,
|
184 |
+
"loss": 0.3499,
|
185 |
+
"step": 2800
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.21,
|
189 |
+
"learning_rate": 6.807654806778575e-05,
|
190 |
+
"loss": 0.3411,
|
191 |
+
"step": 2900
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.22,
|
195 |
+
"learning_rate": 6.794242917427811e-05,
|
196 |
+
"loss": 0.3422,
|
197 |
+
"step": 3000
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.22,
|
201 |
+
"eval_loss": 0.21751175820827484,
|
202 |
+
"eval_runtime": 1050.6432,
|
203 |
+
"eval_samples_per_second": 15.235,
|
204 |
+
"eval_steps_per_second": 1.905,
|
205 |
+
"eval_wer": 0.23247159401289194,
|
206 |
+
"step": 3000
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.23,
|
210 |
+
"learning_rate": 6.780393185952203e-05,
|
211 |
+
"loss": 0.3378,
|
212 |
+
"step": 3100
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.23,
|
216 |
+
"learning_rate": 6.766107453137634e-05,
|
217 |
+
"loss": 0.3354,
|
218 |
+
"step": 3200
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.24,
|
222 |
+
"learning_rate": 6.751387617719493e-05,
|
223 |
+
"loss": 0.3332,
|
224 |
+
"step": 3300
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.25,
|
228 |
+
"learning_rate": 6.736235636130315e-05,
|
229 |
+
"loss": 0.3313,
|
230 |
+
"step": 3400
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.26,
|
234 |
+
"learning_rate": 6.720653522239741e-05,
|
235 |
+
"loss": 0.3291,
|
236 |
+
"step": 3500
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.26,
|
240 |
+
"learning_rate": 6.704643347086866e-05,
|
241 |
+
"loss": 0.3225,
|
242 |
+
"step": 3600
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.27,
|
246 |
+
"learning_rate": 6.688207238604962e-05,
|
247 |
+
"loss": 0.3314,
|
248 |
+
"step": 3700
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.28,
|
252 |
+
"learning_rate": 6.671347381338648e-05,
|
253 |
+
"loss": 0.3279,
|
254 |
+
"step": 3800
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.29,
|
258 |
+
"learning_rate": 6.654066016153562e-05,
|
259 |
+
"loss": 0.3248,
|
260 |
+
"step": 3900
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.29,
|
264 |
+
"learning_rate": 6.636365439938497e-05,
|
265 |
+
"loss": 0.3184,
|
266 |
+
"step": 4000
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.3,
|
270 |
+
"learning_rate": 6.618248005300135e-05,
|
271 |
+
"loss": 0.3312,
|
272 |
+
"step": 4100
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.31,
|
276 |
+
"learning_rate": 6.599716120250359e-05,
|
277 |
+
"loss": 0.3156,
|
278 |
+
"step": 4200
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.32,
|
282 |
+
"learning_rate": 6.58077224788619e-05,
|
283 |
+
"loss": 0.32,
|
284 |
+
"step": 4300
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.32,
|
288 |
+
"learning_rate": 6.561418906062424e-05,
|
289 |
+
"loss": 0.3143,
|
290 |
+
"step": 4400
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.33,
|
294 |
+
"learning_rate": 6.541658667056979e-05,
|
295 |
+
"loss": 0.3151,
|
296 |
+
"step": 4500
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.33,
|
300 |
+
"eval_loss": 0.2139398157596588,
|
301 |
+
"eval_runtime": 1046.9527,
|
302 |
+
"eval_samples_per_second": 15.289,
|
303 |
+
"eval_steps_per_second": 1.911,
|
304 |
+
"eval_wer": 0.19961351469463565,
|
305 |
+
"step": 4500
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.34,
|
309 |
+
"learning_rate": 6.521494157229007e-05,
|
310 |
+
"loss": 0.3228,
|
311 |
+
"step": 4600
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.34,
|
315 |
+
"learning_rate": 6.50092805666982e-05,
|
316 |
+
"loss": 0.3223,
|
317 |
+
"step": 4700
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.35,
|
321 |
+
"learning_rate": 6.47996309884668e-05,
|
322 |
+
"loss": 0.3186,
|
323 |
+
"step": 4800
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.36,
|
327 |
+
"learning_rate": 6.45860207023949e-05,
|
328 |
+
"loss": 0.3069,
|
329 |
+
"step": 4900
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.37,
|
333 |
+
"learning_rate": 6.436847809970438e-05,
|
334 |
+
"loss": 0.3149,
|
335 |
+
"step": 5000
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.37,
|
339 |
+
"learning_rate": 6.41470320942664e-05,
|
340 |
+
"loss": 0.3152,
|
341 |
+
"step": 5100
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.38,
|
345 |
+
"learning_rate": 6.392171211875852e-05,
|
346 |
+
"loss": 0.3054,
|
347 |
+
"step": 5200
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.39,
|
351 |
+
"learning_rate": 6.369485868905532e-05,
|
352 |
+
"loss": 0.3196,
|
353 |
+
"step": 5300
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.4,
|
357 |
+
"learning_rate": 6.346191911024053e-05,
|
358 |
+
"loss": 0.3011,
|
359 |
+
"step": 5400
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.4,
|
363 |
+
"learning_rate": 6.322519662061658e-05,
|
364 |
+
"loss": 0.3103,
|
365 |
+
"step": 5500
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.41,
|
369 |
+
"learning_rate": 6.298472268327846e-05,
|
370 |
+
"loss": 0.305,
|
371 |
+
"step": 5600
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.42,
|
375 |
+
"learning_rate": 6.274052925993097e-05,
|
376 |
+
"loss": 0.3043,
|
377 |
+
"step": 5700
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.43,
|
381 |
+
"learning_rate": 6.249264880664065e-05,
|
382 |
+
"loss": 0.3031,
|
383 |
+
"step": 5800
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.43,
|
387 |
+
"learning_rate": 6.224111426952202e-05,
|
388 |
+
"loss": 0.2988,
|
389 |
+
"step": 5900
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.44,
|
393 |
+
"learning_rate": 6.198595908035864e-05,
|
394 |
+
"loss": 0.3,
|
395 |
+
"step": 6000
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.44,
|
399 |
+
"eval_loss": 0.20627757906913757,
|
400 |
+
"eval_runtime": 1055.8743,
|
401 |
+
"eval_samples_per_second": 15.16,
|
402 |
+
"eval_steps_per_second": 1.895,
|
403 |
+
"eval_wer": 0.20541079427510106,
|
404 |
+
"step": 6000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.45,
|
408 |
+
"learning_rate": 6.172721715215964e-05,
|
409 |
+
"loss": 0.2983,
|
410 |
+
"step": 6100
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.45,
|
414 |
+
"learning_rate": 6.146492287465236e-05,
|
415 |
+
"loss": 0.3012,
|
416 |
+
"step": 6200
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.46,
|
420 |
+
"learning_rate": 6.119911110971146e-05,
|
421 |
+
"loss": 0.2989,
|
422 |
+
"step": 6300
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.47,
|
426 |
+
"learning_rate": 6.092981718672549e-05,
|
427 |
+
"loss": 0.2909,
|
428 |
+
"step": 6400
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.48,
|
432 |
+
"learning_rate": 6.065707689790118e-05,
|
433 |
+
"loss": 0.3063,
|
434 |
+
"step": 6500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.48,
|
438 |
+
"learning_rate": 6.03809264935062e-05,
|
439 |
+
"loss": 0.2908,
|
440 |
+
"step": 6600
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.49,
|
444 |
+
"learning_rate": 6.0101402677051154e-05,
|
445 |
+
"loss": 0.309,
|
446 |
+
"step": 6700
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.5,
|
450 |
+
"learning_rate": 5.981854260041124e-05,
|
451 |
+
"loss": 0.2891,
|
452 |
+
"step": 6800
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.51,
|
456 |
+
"learning_rate": 5.9532383858888345e-05,
|
457 |
+
"loss": 0.2902,
|
458 |
+
"step": 6900
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.51,
|
462 |
+
"learning_rate": 5.924296448621422e-05,
|
463 |
+
"loss": 0.289,
|
464 |
+
"step": 7000
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.52,
|
468 |
+
"learning_rate": 5.8950322949495356e-05,
|
469 |
+
"loss": 0.2951,
|
470 |
+
"step": 7100
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.53,
|
474 |
+
"learning_rate": 5.8654498144100274e-05,
|
475 |
+
"loss": 0.2923,
|
476 |
+
"step": 7200
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.54,
|
480 |
+
"learning_rate": 5.835552938848987e-05,
|
481 |
+
"loss": 0.2967,
|
482 |
+
"step": 7300
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.54,
|
486 |
+
"learning_rate": 5.805345641899159e-05,
|
487 |
+
"loss": 0.2863,
|
488 |
+
"step": 7400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.55,
|
492 |
+
"learning_rate": 5.774831938451798e-05,
|
493 |
+
"loss": 0.2824,
|
494 |
+
"step": 7500
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.55,
|
498 |
+
"eval_loss": 0.18351121246814728,
|
499 |
+
"eval_runtime": 1075.697,
|
500 |
+
"eval_samples_per_second": 14.881,
|
501 |
+
"eval_steps_per_second": 1.86,
|
502 |
+
"eval_wer": 0.18133398885611274,
|
503 |
+
"step": 7500
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.56,
|
507 |
+
"learning_rate": 5.744325527887681e-05,
|
508 |
+
"loss": 0.2833,
|
509 |
+
"step": 7600
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.56,
|
513 |
+
"learning_rate": 5.713214180625491e-05,
|
514 |
+
"loss": 0.2909,
|
515 |
+
"step": 7700
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.57,
|
519 |
+
"learning_rate": 5.68180867217851e-05,
|
520 |
+
"loss": 0.286,
|
521 |
+
"step": 7800
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.58,
|
525 |
+
"learning_rate": 5.650113176693846e-05,
|
526 |
+
"loss": 0.2778,
|
527 |
+
"step": 7900
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.59,
|
531 |
+
"learning_rate": 5.618131906861165e-05,
|
532 |
+
"loss": 0.2777,
|
533 |
+
"step": 8000
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.59,
|
537 |
+
"learning_rate": 5.5858691133527713e-05,
|
538 |
+
"loss": 0.2829,
|
539 |
+
"step": 8100
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.6,
|
543 |
+
"learning_rate": 5.553329084258652e-05,
|
544 |
+
"loss": 0.2748,
|
545 |
+
"step": 8200
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.61,
|
549 |
+
"learning_rate": 5.5205161445165346e-05,
|
550 |
+
"loss": 0.2827,
|
551 |
+
"step": 8300
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.62,
|
555 |
+
"learning_rate": 5.4874346553370585e-05,
|
556 |
+
"loss": 0.2712,
|
557 |
+
"step": 8400
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.62,
|
561 |
+
"learning_rate": 5.4540890136241195e-05,
|
562 |
+
"loss": 0.2792,
|
563 |
+
"step": 8500
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.63,
|
567 |
+
"learning_rate": 5.420483651390469e-05,
|
568 |
+
"loss": 0.2815,
|
569 |
+
"step": 8600
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.64,
|
573 |
+
"learning_rate": 5.386623035168656e-05,
|
574 |
+
"loss": 0.2766,
|
575 |
+
"step": 8700
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.65,
|
579 |
+
"learning_rate": 5.3525116654173646e-05,
|
580 |
+
"loss": 0.2704,
|
581 |
+
"step": 8800
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.65,
|
585 |
+
"learning_rate": 5.318154075923263e-05,
|
586 |
+
"loss": 0.2695,
|
587 |
+
"step": 8900
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.66,
|
591 |
+
"learning_rate": 5.283554833198404e-05,
|
592 |
+
"loss": 0.2771,
|
593 |
+
"step": 9000
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.66,
|
597 |
+
"eval_loss": 0.18808312714099884,
|
598 |
+
"eval_runtime": 1061.3581,
|
599 |
+
"eval_samples_per_second": 15.082,
|
600 |
+
"eval_steps_per_second": 1.885,
|
601 |
+
"eval_wer": 0.17624685895334863,
|
602 |
+
"step": 9000
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.67,
|
606 |
+
"learning_rate": 5.2487185358732866e-05,
|
607 |
+
"loss": 0.276,
|
608 |
+
"step": 9100
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.67,
|
612 |
+
"learning_rate": 5.213649814085646e-05,
|
613 |
+
"loss": 0.2647,
|
614 |
+
"step": 9200
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.68,
|
618 |
+
"learning_rate": 5.178353328865057e-05,
|
619 |
+
"loss": 0.2901,
|
620 |
+
"step": 9300
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.69,
|
624 |
+
"learning_rate": 5.142833771513431e-05,
|
625 |
+
"loss": 0.2771,
|
626 |
+
"step": 9400
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.7,
|
630 |
+
"learning_rate": 5.107095862981481e-05,
|
631 |
+
"loss": 0.2706,
|
632 |
+
"step": 9500
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.7,
|
636 |
+
"learning_rate": 5.071144353241269e-05,
|
637 |
+
"loss": 0.2753,
|
638 |
+
"step": 9600
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.71,
|
642 |
+
"learning_rate": 5.0353466418956284e-05,
|
643 |
+
"loss": 0.2777,
|
644 |
+
"step": 9700
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.72,
|
648 |
+
"learning_rate": 4.9989843088674705e-05,
|
649 |
+
"loss": 0.2621,
|
650 |
+
"step": 9800
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.73,
|
654 |
+
"learning_rate": 4.962422743878782e-05,
|
655 |
+
"loss": 0.2628,
|
656 |
+
"step": 9900
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.73,
|
660 |
+
"learning_rate": 4.9256668063748734e-05,
|
661 |
+
"loss": 0.272,
|
662 |
+
"step": 10000
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.74,
|
666 |
+
"learning_rate": 4.8887213816353655e-05,
|
667 |
+
"loss": 0.2683,
|
668 |
+
"step": 10100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.75,
|
672 |
+
"learning_rate": 4.851591380124868e-05,
|
673 |
+
"loss": 0.2627,
|
674 |
+
"step": 10200
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.76,
|
678 |
+
"learning_rate": 4.814281736840332e-05,
|
679 |
+
"loss": 0.2565,
|
680 |
+
"step": 10300
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.76,
|
684 |
+
"learning_rate": 4.776797410655135e-05,
|
685 |
+
"loss": 0.2619,
|
686 |
+
"step": 10400
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.77,
|
690 |
+
"learning_rate": 4.739143383659982e-05,
|
691 |
+
"loss": 0.2616,
|
692 |
+
"step": 10500
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.77,
|
696 |
+
"eval_loss": 0.18062810599803925,
|
697 |
+
"eval_runtime": 1044.5923,
|
698 |
+
"eval_samples_per_second": 15.324,
|
699 |
+
"eval_steps_per_second": 1.916,
|
700 |
+
"eval_wer": 0.17676581448705342,
|
701 |
+
"step": 10500
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 0.78,
|
705 |
+
"learning_rate": 4.701324660500736e-05,
|
706 |
+
"loss": 0.2575,
|
707 |
+
"step": 10600
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 0.79,
|
711 |
+
"learning_rate": 4.663346267713244e-05,
|
712 |
+
"loss": 0.2642,
|
713 |
+
"step": 10700
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.79,
|
717 |
+
"learning_rate": 4.625213253055248e-05,
|
718 |
+
"loss": 0.2561,
|
719 |
+
"step": 10800
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.8,
|
723 |
+
"learning_rate": 4.586930684835486e-05,
|
724 |
+
"loss": 0.2553,
|
725 |
+
"step": 10900
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.81,
|
729 |
+
"learning_rate": 4.5485036512400575e-05,
|
730 |
+
"loss": 0.2533,
|
731 |
+
"step": 11000
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.81,
|
735 |
+
"learning_rate": 4.509937259656139e-05,
|
736 |
+
"loss": 0.2528,
|
737 |
+
"step": 11100
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.82,
|
741 |
+
"learning_rate": 4.471236635993164e-05,
|
742 |
+
"loss": 0.2542,
|
743 |
+
"step": 11200
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 0.83,
|
747 |
+
"learning_rate": 4.432406924001522e-05,
|
748 |
+
"loss": 0.2506,
|
749 |
+
"step": 11300
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.84,
|
753 |
+
"learning_rate": 4.393453284588905e-05,
|
754 |
+
"loss": 0.2587,
|
755 |
+
"step": 11400
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.84,
|
759 |
+
"learning_rate": 4.3543808951343574e-05,
|
760 |
+
"loss": 0.2503,
|
761 |
+
"step": 11500
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.85,
|
765 |
+
"learning_rate": 4.3151949488001475e-05,
|
766 |
+
"loss": 0.2535,
|
767 |
+
"step": 11600
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.86,
|
771 |
+
"learning_rate": 4.275900653841536e-05,
|
772 |
+
"loss": 0.2526,
|
773 |
+
"step": 11700
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.87,
|
777 |
+
"learning_rate": 4.236503232914543e-05,
|
778 |
+
"loss": 0.253,
|
779 |
+
"step": 11800
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.87,
|
783 |
+
"learning_rate": 4.197007922381793e-05,
|
784 |
+
"loss": 0.2523,
|
785 |
+
"step": 11900
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.88,
|
789 |
+
"learning_rate": 4.157419971616547e-05,
|
790 |
+
"loss": 0.2446,
|
791 |
+
"step": 12000
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.88,
|
795 |
+
"eval_loss": 0.1757470816373825,
|
796 |
+
"eval_runtime": 1062.3089,
|
797 |
+
"eval_samples_per_second": 15.068,
|
798 |
+
"eval_steps_per_second": 1.884,
|
799 |
+
"eval_wer": 0.1589711023708074,
|
800 |
+
"step": 12000
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.89,
|
804 |
+
"learning_rate": 4.1177446423050005e-05,
|
805 |
+
"loss": 0.2473,
|
806 |
+
"step": 12100
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.9,
|
810 |
+
"learning_rate": 4.077987207746943e-05,
|
811 |
+
"loss": 0.2438,
|
812 |
+
"step": 12200
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.9,
|
816 |
+
"learning_rate": 4.0381529521548834e-05,
|
817 |
+
"loss": 0.2468,
|
818 |
+
"step": 12300
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.91,
|
822 |
+
"learning_rate": 3.998247169951711e-05,
|
823 |
+
"loss": 0.2524,
|
824 |
+
"step": 12400
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.92,
|
828 |
+
"learning_rate": 3.958275165067014e-05,
|
829 |
+
"loss": 0.2372,
|
830 |
+
"step": 12500
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.92,
|
834 |
+
"learning_rate": 3.91824225023212e-05,
|
835 |
+
"loss": 0.2324,
|
836 |
+
"step": 12600
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.93,
|
840 |
+
"learning_rate": 3.8785548889903e-05,
|
841 |
+
"loss": 0.2436,
|
842 |
+
"step": 12700
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.94,
|
846 |
+
"learning_rate": 3.8384166003361756e-05,
|
847 |
+
"loss": 0.2405,
|
848 |
+
"step": 12800
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.95,
|
852 |
+
"learning_rate": 3.798635370086602e-05,
|
853 |
+
"loss": 0.2349,
|
854 |
+
"step": 12900
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.95,
|
858 |
+
"learning_rate": 3.7584128333900755e-05,
|
859 |
+
"loss": 0.2424,
|
860 |
+
"step": 13000
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.96,
|
864 |
+
"learning_rate": 3.7181559507066575e-05,
|
865 |
+
"loss": 0.2366,
|
866 |
+
"step": 13100
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.97,
|
870 |
+
"learning_rate": 3.677870072631157e-05,
|
871 |
+
"loss": 0.2435,
|
872 |
+
"step": 13200
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.98,
|
876 |
+
"learning_rate": 3.637560553612199e-05,
|
877 |
+
"loss": 0.2377,
|
878 |
+
"step": 13300
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.98,
|
882 |
+
"learning_rate": 3.597232751240556e-05,
|
883 |
+
"loss": 0.2302,
|
884 |
+
"step": 13400
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.99,
|
888 |
+
"learning_rate": 3.556892025537066e-05,
|
889 |
+
"loss": 0.2377,
|
890 |
+
"step": 13500
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.99,
|
894 |
+
"eval_loss": 0.1588028222322464,
|
895 |
+
"eval_runtime": 1044.908,
|
896 |
+
"eval_samples_per_second": 15.319,
|
897 |
+
"eval_steps_per_second": 1.915,
|
898 |
+
"eval_wer": 0.15275046432863543,
|
899 |
+
"step": 13500
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 1.0,
|
903 |
+
"learning_rate": 3.516543738240223e-05,
|
904 |
+
"loss": 0.2313,
|
905 |
+
"step": 13600
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.01,
|
909 |
+
"learning_rate": 3.476193252093543e-05,
|
910 |
+
"loss": 0.22,
|
911 |
+
"step": 13700
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.01,
|
915 |
+
"learning_rate": 3.4358459301327927e-05,
|
916 |
+
"loss": 0.214,
|
917 |
+
"step": 13800
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 1.02,
|
921 |
+
"learning_rate": 3.395507134973183e-05,
|
922 |
+
"loss": 0.2257,
|
923 |
+
"step": 13900
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 1.03,
|
927 |
+
"learning_rate": 3.355182228096618e-05,
|
928 |
+
"loss": 0.2308,
|
929 |
+
"step": 14000
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.03,
|
933 |
+
"learning_rate": 3.314876569139091e-05,
|
934 |
+
"loss": 0.2244,
|
935 |
+
"step": 14100
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 1.04,
|
939 |
+
"learning_rate": 3.274595515178329e-05,
|
940 |
+
"loss": 0.2176,
|
941 |
+
"step": 14200
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 1.05,
|
945 |
+
"learning_rate": 3.234344420021777e-05,
|
946 |
+
"loss": 0.2238,
|
947 |
+
"step": 14300
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.06,
|
951 |
+
"learning_rate": 3.194128633495017e-05,
|
952 |
+
"loss": 0.219,
|
953 |
+
"step": 14400
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.06,
|
957 |
+
"learning_rate": 3.153953500730713e-05,
|
958 |
+
"loss": 0.2265,
|
959 |
+
"step": 14500
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 1.07,
|
963 |
+
"learning_rate": 3.113824361458186e-05,
|
964 |
+
"loss": 0.2218,
|
965 |
+
"step": 14600
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.08,
|
969 |
+
"learning_rate": 3.073746549293703e-05,
|
970 |
+
"loss": 0.2129,
|
971 |
+
"step": 14700
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 1.09,
|
975 |
+
"learning_rate": 3.0337253910315748e-05,
|
976 |
+
"loss": 0.2126,
|
977 |
+
"step": 14800
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 1.09,
|
981 |
+
"learning_rate": 2.993766205936171e-05,
|
982 |
+
"loss": 0.2047,
|
983 |
+
"step": 14900
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 1.1,
|
987 |
+
"learning_rate": 2.9538743050349254e-05,
|
988 |
+
"loss": 0.2141,
|
989 |
+
"step": 15000
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.1,
|
993 |
+
"eval_loss": 0.14499780535697937,
|
994 |
+
"eval_runtime": 1046.3411,
|
995 |
+
"eval_samples_per_second": 15.298,
|
996 |
+
"eval_steps_per_second": 1.912,
|
997 |
+
"eval_wer": 0.14962307440183548,
|
998 |
+
"step": 15000
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1.11,
|
1002 |
+
"learning_rate": 2.9140549904124422e-05,
|
1003 |
+
"loss": 0.2066,
|
1004 |
+
"step": 15100
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.12,
|
1008 |
+
"learning_rate": 2.8743135545057887e-05,
|
1009 |
+
"loss": 0.2124,
|
1010 |
+
"step": 15200
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.12,
|
1014 |
+
"learning_rate": 2.8346552794010703e-05,
|
1015 |
+
"loss": 0.2089,
|
1016 |
+
"step": 15300
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.13,
|
1020 |
+
"learning_rate": 2.7950854361313814e-05,
|
1021 |
+
"loss": 0.2121,
|
1022 |
+
"step": 15400
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.14,
|
1026 |
+
"learning_rate": 2.755609283976226e-05,
|
1027 |
+
"loss": 0.209,
|
1028 |
+
"step": 15500
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.14,
|
1032 |
+
"learning_rate": 2.7162320697625e-05,
|
1033 |
+
"loss": 0.2052,
|
1034 |
+
"step": 15600
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.15,
|
1038 |
+
"learning_rate": 2.676959027167128e-05,
|
1039 |
+
"loss": 0.209,
|
1040 |
+
"step": 15700
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.16,
|
1044 |
+
"learning_rate": 2.6377953760214495e-05,
|
1045 |
+
"loss": 0.2089,
|
1046 |
+
"step": 15800
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.17,
|
1050 |
+
"learning_rate": 2.598746321617443e-05,
|
1051 |
+
"loss": 0.2021,
|
1052 |
+
"step": 15900
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.17,
|
1056 |
+
"learning_rate": 2.5598170540158846e-05,
|
1057 |
+
"loss": 0.2047,
|
1058 |
+
"step": 16000
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.18,
|
1062 |
+
"learning_rate": 2.5210127473565314e-05,
|
1063 |
+
"loss": 0.1979,
|
1064 |
+
"step": 16100
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1.19,
|
1068 |
+
"learning_rate": 2.482338559170417e-05,
|
1069 |
+
"loss": 0.2044,
|
1070 |
+
"step": 16200
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.2,
|
1074 |
+
"learning_rate": 2.4437996296943596e-05,
|
1075 |
+
"loss": 0.2082,
|
1076 |
+
"step": 16300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.2,
|
1080 |
+
"learning_rate": 2.4057843550135512e-05,
|
1081 |
+
"loss": 0.2004,
|
1082 |
+
"step": 16400
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1.21,
|
1086 |
+
"learning_rate": 2.3675298110320073e-05,
|
1087 |
+
"loss": 0.1953,
|
1088 |
+
"step": 16500
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1.21,
|
1092 |
+
"eval_loss": 0.13918258249759674,
|
1093 |
+
"eval_runtime": 1060.8068,
|
1094 |
+
"eval_samples_per_second": 15.089,
|
1095 |
+
"eval_steps_per_second": 1.886,
|
1096 |
+
"eval_wer": 0.13435485633125752,
|
1097 |
+
"step": 16500
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 1.22,
|
1101 |
+
"learning_rate": 2.3294257851410495e-05,
|
1102 |
+
"loss": 0.1984,
|
1103 |
+
"step": 16600
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 1.23,
|
1107 |
+
"learning_rate": 2.2914773417964826e-05,
|
1108 |
+
"loss": 0.1972,
|
1109 |
+
"step": 16700
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 1.23,
|
1113 |
+
"learning_rate": 2.2536895247754305e-05,
|
1114 |
+
"loss": 0.194,
|
1115 |
+
"step": 16800
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.24,
|
1119 |
+
"learning_rate": 2.2160673565059625e-05,
|
1120 |
+
"loss": 0.2016,
|
1121 |
+
"step": 16900
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 1.25,
|
1125 |
+
"learning_rate": 2.1786158373995577e-05,
|
1126 |
+
"loss": 0.1973,
|
1127 |
+
"step": 17000
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 1.25,
|
1131 |
+
"learning_rate": 2.1413399451864916e-05,
|
1132 |
+
"loss": 0.1872,
|
1133 |
+
"step": 17100
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 1.26,
|
1137 |
+
"learning_rate": 2.1042446342542387e-05,
|
1138 |
+
"loss": 0.2035,
|
1139 |
+
"step": 17200
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 1.27,
|
1143 |
+
"learning_rate": 2.0673348349889817e-05,
|
1144 |
+
"loss": 0.1937,
|
1145 |
+
"step": 17300
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 1.28,
|
1149 |
+
"learning_rate": 2.0306154531203048e-05,
|
1150 |
+
"loss": 0.1938,
|
1151 |
+
"step": 17400
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 1.28,
|
1155 |
+
"learning_rate": 1.994091369069168e-05,
|
1156 |
+
"loss": 0.1953,
|
1157 |
+
"step": 17500
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.29,
|
1161 |
+
"learning_rate": 1.957767437299243e-05,
|
1162 |
+
"loss": 0.1887,
|
1163 |
+
"step": 17600
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 1.3,
|
1167 |
+
"learning_rate": 1.9216484856717008e-05,
|
1168 |
+
"loss": 0.1921,
|
1169 |
+
"step": 17700
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 1.31,
|
1173 |
+
"learning_rate": 1.8857393148035336e-05,
|
1174 |
+
"loss": 0.1917,
|
1175 |
+
"step": 17800
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 1.31,
|
1179 |
+
"learning_rate": 1.8500446974295e-05,
|
1180 |
+
"loss": 0.1836,
|
1181 |
+
"step": 17900
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 1.32,
|
1185 |
+
"learning_rate": 1.8145693777677743e-05,
|
1186 |
+
"loss": 0.1923,
|
1187 |
+
"step": 18000
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 1.32,
|
1191 |
+
"eval_loss": 0.1327279508113861,
|
1192 |
+
"eval_runtime": 1039.577,
|
1193 |
+
"eval_samples_per_second": 15.398,
|
1194 |
+
"eval_steps_per_second": 1.925,
|
1195 |
+
"eval_wer": 0.13173959357587675,
|
1196 |
+
"step": 18000
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.33,
|
1200 |
+
"learning_rate": 1.779669459685722e-05,
|
1201 |
+
"loss": 0.1927,
|
1202 |
+
"step": 18100
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.34,
|
1206 |
+
"learning_rate": 1.7446445408141307e-05,
|
1207 |
+
"loss": 0.1959,
|
1208 |
+
"step": 18200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1.34,
|
1212 |
+
"learning_rate": 1.7098529285272e-05,
|
1213 |
+
"loss": 0.1872,
|
1214 |
+
"step": 18300
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.35,
|
1218 |
+
"learning_rate": 1.6752992470235188e-05,
|
1219 |
+
"loss": 0.1848,
|
1220 |
+
"step": 18400
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.36,
|
1224 |
+
"learning_rate": 1.640988088877985e-05,
|
1225 |
+
"loss": 0.184,
|
1226 |
+
"step": 18500
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.36,
|
1230 |
+
"learning_rate": 1.6069240144314012e-05,
|
1231 |
+
"loss": 0.1919,
|
1232 |
+
"step": 18600
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.37,
|
1236 |
+
"learning_rate": 1.5731115511843525e-05,
|
1237 |
+
"loss": 0.176,
|
1238 |
+
"step": 18700
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.38,
|
1242 |
+
"learning_rate": 1.5395551931954524e-05,
|
1243 |
+
"loss": 0.1789,
|
1244 |
+
"step": 18800
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.39,
|
1248 |
+
"learning_rate": 1.5062594004840269e-05,
|
1249 |
+
"loss": 0.1937,
|
1250 |
+
"step": 18900
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 1.39,
|
1254 |
+
"learning_rate": 1.4732285984373345e-05,
|
1255 |
+
"loss": 0.1861,
|
1256 |
+
"step": 19000
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.4,
|
1260 |
+
"learning_rate": 1.440467177222377e-05,
|
1261 |
+
"loss": 0.1757,
|
1262 |
+
"step": 19100
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.41,
|
1266 |
+
"learning_rate": 1.4079794912023988e-05,
|
1267 |
+
"loss": 0.1839,
|
1268 |
+
"step": 19200
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 1.42,
|
1272 |
+
"learning_rate": 1.3757698583581431e-05,
|
1273 |
+
"loss": 0.1844,
|
1274 |
+
"step": 19300
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.42,
|
1278 |
+
"learning_rate": 1.3438425597139414e-05,
|
1279 |
+
"loss": 0.1855,
|
1280 |
+
"step": 19400
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.43,
|
1284 |
+
"learning_rate": 1.3122018387687183e-05,
|
1285 |
+
"loss": 0.1804,
|
1286 |
+
"step": 19500
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.43,
|
1290 |
+
"eval_loss": 0.12711018323898315,
|
1291 |
+
"eval_runtime": 1058.0447,
|
1292 |
+
"eval_samples_per_second": 15.129,
|
1293 |
+
"eval_steps_per_second": 1.891,
|
1294 |
+
"eval_wer": 0.12372992461488037,
|
1295 |
+
"step": 19500
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 1.44,
|
1299 |
+
"learning_rate": 1.280851900931984e-05,
|
1300 |
+
"loss": 0.1833,
|
1301 |
+
"step": 19600
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 1.45,
|
1305 |
+
"learning_rate": 1.2497969129648841e-05,
|
1306 |
+
"loss": 0.181,
|
1307 |
+
"step": 19700
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 1.45,
|
1311 |
+
"learning_rate": 1.2190410024263938e-05,
|
1312 |
+
"loss": 0.1719,
|
1313 |
+
"step": 19800
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 1.46,
|
1317 |
+
"learning_rate": 1.1885882571247166e-05,
|
1318 |
+
"loss": 0.1758,
|
1319 |
+
"step": 19900
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.47,
|
1323 |
+
"learning_rate": 1.1584427245739682e-05,
|
1324 |
+
"loss": 0.1792,
|
1325 |
+
"step": 20000
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.47,
|
1329 |
+
"learning_rate": 1.1286084114562175e-05,
|
1330 |
+
"loss": 0.1774,
|
1331 |
+
"step": 20100
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 1.48,
|
1335 |
+
"learning_rate": 1.0990892830889517e-05,
|
1336 |
+
"loss": 0.1796,
|
1337 |
+
"step": 20200
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 1.49,
|
1341 |
+
"learning_rate": 1.0698892628980422e-05,
|
1342 |
+
"loss": 0.1816,
|
1343 |
+
"step": 20300
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 1.5,
|
1347 |
+
"learning_rate": 1.041012231896276e-05,
|
1348 |
+
"loss": 0.174,
|
1349 |
+
"step": 20400
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.5,
|
1353 |
+
"learning_rate": 1.012462028167525e-05,
|
1354 |
+
"loss": 0.1717,
|
1355 |
+
"step": 20500
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 1.51,
|
1359 |
+
"learning_rate": 9.842424463566227e-06,
|
1360 |
+
"loss": 0.1793,
|
1361 |
+
"step": 20600
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.52,
|
1365 |
+
"learning_rate": 9.563572371650113e-06,
|
1366 |
+
"loss": 0.1699,
|
1367 |
+
"step": 20700
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.53,
|
1371 |
+
"learning_rate": 9.288101068522322e-06,
|
1372 |
+
"loss": 0.1726,
|
1373 |
+
"step": 20800
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 1.53,
|
1377 |
+
"learning_rate": 9.016047167433221e-06,
|
1378 |
+
"loss": 0.1734,
|
1379 |
+
"step": 20900
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.54,
|
1383 |
+
"learning_rate": 8.747446827421805e-06,
|
1384 |
+
"loss": 0.1776,
|
1385 |
+
"step": 21000
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.54,
|
1389 |
+
"eval_loss": 0.12307832390069962,
|
1390 |
+
"eval_runtime": 1040.1826,
|
1391 |
+
"eval_samples_per_second": 15.389,
|
1392 |
+
"eval_steps_per_second": 1.924,
|
1393 |
+
"eval_wer": 0.1186018245384027,
|
1394 |
+
"step": 21000
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.55,
|
1398 |
+
"learning_rate": 8.482335748509769e-06,
|
1399 |
+
"loss": 0.1755,
|
1400 |
+
"step": 21100
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.56,
|
1404 |
+
"learning_rate": 8.220749166956552e-06,
|
1405 |
+
"loss": 0.1717,
|
1406 |
+
"step": 21200
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.56,
|
1410 |
+
"learning_rate": 7.962721850576054e-06,
|
1411 |
+
"loss": 0.167,
|
1412 |
+
"step": 21300
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.57,
|
1416 |
+
"learning_rate": 7.708288094115607e-06,
|
1417 |
+
"loss": 0.1698,
|
1418 |
+
"step": 21400
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 1.58,
|
1422 |
+
"learning_rate": 7.457481714697784e-06,
|
1423 |
+
"loss": 0.1709,
|
1424 |
+
"step": 21500
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.58,
|
1428 |
+
"learning_rate": 7.210336047325761e-06,
|
1429 |
+
"loss": 0.1748,
|
1430 |
+
"step": 21600
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.59,
|
1434 |
+
"learning_rate": 6.9668839404526865e-06,
|
1435 |
+
"loss": 0.1776,
|
1436 |
+
"step": 21700
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.6,
|
1440 |
+
"learning_rate": 6.727157751615771e-06,
|
1441 |
+
"loss": 0.1664,
|
1442 |
+
"step": 21800
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.61,
|
1446 |
+
"learning_rate": 6.491189343135589e-06,
|
1447 |
+
"loss": 0.1754,
|
1448 |
+
"step": 21900
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.61,
|
1452 |
+
"learning_rate": 6.2590100778812376e-06,
|
1453 |
+
"loss": 0.1766,
|
1454 |
+
"step": 22000
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.62,
|
1458 |
+
"learning_rate": 6.030650815101828e-06,
|
1459 |
+
"loss": 0.171,
|
1460 |
+
"step": 22100
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.63,
|
1464 |
+
"learning_rate": 5.808367837755271e-06,
|
1465 |
+
"loss": 0.1703,
|
1466 |
+
"step": 22200
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.64,
|
1470 |
+
"learning_rate": 5.5877001747984834e-06,
|
1471 |
+
"loss": 0.164,
|
1472 |
+
"step": 22300
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.64,
|
1476 |
+
"learning_rate": 5.3709417389918604e-06,
|
1477 |
+
"loss": 0.1664,
|
1478 |
+
"step": 22400
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.65,
|
1482 |
+
"learning_rate": 5.158121339981953e-06,
|
1483 |
+
"loss": 0.1671,
|
1484 |
+
"step": 22500
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.65,
|
1488 |
+
"eval_loss": 0.11993325501680374,
|
1489 |
+
"eval_runtime": 1045.6599,
|
1490 |
+
"eval_samples_per_second": 15.308,
|
1491 |
+
"eval_steps_per_second": 1.914,
|
1492 |
+
"eval_wer": 0.11479159838304381,
|
1493 |
+
"step": 22500
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.66,
|
1497 |
+
"learning_rate": 4.949267264005701e-06,
|
1498 |
+
"loss": 0.1576,
|
1499 |
+
"step": 22600
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 1.67,
|
1503 |
+
"learning_rate": 4.7444072701308795e-06,
|
1504 |
+
"loss": 0.1583,
|
1505 |
+
"step": 22700
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 1.67,
|
1509 |
+
"learning_rate": 4.543568586566601e-06,
|
1510 |
+
"loss": 0.1678,
|
1511 |
+
"step": 22800
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 1.68,
|
1515 |
+
"learning_rate": 4.346777907044375e-06,
|
1516 |
+
"loss": 0.1687,
|
1517 |
+
"step": 22900
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 1.69,
|
1521 |
+
"learning_rate": 4.154061387270205e-06,
|
1522 |
+
"loss": 0.1671,
|
1523 |
+
"step": 23000
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 1.69,
|
1527 |
+
"learning_rate": 3.965444641448219e-06,
|
1528 |
+
"loss": 0.1656,
|
1529 |
+
"step": 23100
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.7,
|
1533 |
+
"learning_rate": 3.780952738876231e-06,
|
1534 |
+
"loss": 0.169,
|
1535 |
+
"step": 23200
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.71,
|
1539 |
+
"learning_rate": 3.600610200613753e-06,
|
1540 |
+
"loss": 0.1619,
|
1541 |
+
"step": 23300
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 1.72,
|
1545 |
+
"learning_rate": 3.4244409962228724e-06,
|
1546 |
+
"loss": 0.1702,
|
1547 |
+
"step": 23400
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 1.72,
|
1551 |
+
"learning_rate": 3.252468540582438e-06,
|
1552 |
+
"loss": 0.1654,
|
1553 |
+
"step": 23500
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 1.73,
|
1557 |
+
"learning_rate": 3.0847156907759337e-06,
|
1558 |
+
"loss": 0.1593,
|
1559 |
+
"step": 23600
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 1.74,
|
1563 |
+
"learning_rate": 2.92120474305353e-06,
|
1564 |
+
"loss": 0.1622,
|
1565 |
+
"step": 23700
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"epoch": 1.75,
|
1569 |
+
"learning_rate": 2.7619574298686577e-06,
|
1570 |
+
"loss": 0.1653,
|
1571 |
+
"step": 23800
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.75,
|
1575 |
+
"learning_rate": 2.6069949169895127e-06,
|
1576 |
+
"loss": 0.1637,
|
1577 |
+
"step": 23900
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.76,
|
1581 |
+
"learning_rate": 2.4578229939112028e-06,
|
1582 |
+
"loss": 0.1597,
|
1583 |
+
"step": 24000
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 1.76,
|
1587 |
+
"eval_loss": 0.11753135174512863,
|
1588 |
+
"eval_runtime": 1040.817,
|
1589 |
+
"eval_samples_per_second": 15.379,
|
1590 |
+
"eval_steps_per_second": 1.923,
|
1591 |
+
"eval_wer": 0.11268846279908226,
|
1592 |
+
"step": 24000
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.77,
|
1596 |
+
"learning_rate": 2.311447946777479e-06,
|
1597 |
+
"loss": 0.1599,
|
1598 |
+
"step": 24100
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.78,
|
1602 |
+
"learning_rate": 2.1694175777527574e-06,
|
1603 |
+
"loss": 0.1628,
|
1604 |
+
"step": 24200
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.78,
|
1608 |
+
"learning_rate": 2.0317507642787156e-06,
|
1609 |
+
"loss": 0.1638,
|
1610 |
+
"step": 24300
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 1.79,
|
1614 |
+
"learning_rate": 1.898465803831184e-06,
|
1615 |
+
"loss": 0.1651,
|
1616 |
+
"step": 24400
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.8,
|
1620 |
+
"learning_rate": 1.7695804114881745e-06,
|
1621 |
+
"loss": 0.1629,
|
1622 |
+
"step": 24500
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 1.8,
|
1626 |
+
"learning_rate": 1.6451117175753708e-06,
|
1627 |
+
"loss": 0.1699,
|
1628 |
+
"step": 24600
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.81,
|
1632 |
+
"learning_rate": 1.5250762653892972e-06,
|
1633 |
+
"loss": 0.1578,
|
1634 |
+
"step": 24700
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.82,
|
1638 |
+
"learning_rate": 1.4094900089985423e-06,
|
1639 |
+
"loss": 0.1648,
|
1640 |
+
"step": 24800
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.83,
|
1644 |
+
"learning_rate": 1.2983683111232683e-06,
|
1645 |
+
"loss": 0.1607,
|
1646 |
+
"step": 24900
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.83,
|
1650 |
+
"learning_rate": 1.1917259410933516e-06,
|
1651 |
+
"loss": 0.1593,
|
1652 |
+
"step": 25000
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.84,
|
1656 |
+
"learning_rate": 1.0895770728853425e-06,
|
1657 |
+
"loss": 0.159,
|
1658 |
+
"step": 25100
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.85,
|
1662 |
+
"learning_rate": 9.919352832386174e-07,
|
1663 |
+
"loss": 0.1608,
|
1664 |
+
"step": 25200
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.86,
|
1668 |
+
"learning_rate": 8.988135498508481e-07,
|
1669 |
+
"loss": 0.1619,
|
1670 |
+
"step": 25300
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.86,
|
1674 |
+
"learning_rate": 8.102242496531358e-07,
|
1675 |
+
"loss": 0.163,
|
1676 |
+
"step": 25400
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.87,
|
1680 |
+
"learning_rate": 7.261791571649655e-07,
|
1681 |
+
"loss": 0.1619,
|
1682 |
+
"step": 25500
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.87,
|
1686 |
+
"eval_loss": 0.11700794845819473,
|
1687 |
+
"eval_runtime": 1036.7542,
|
1688 |
+
"eval_samples_per_second": 15.44,
|
1689 |
+
"eval_steps_per_second": 1.93,
|
1690 |
+
"eval_wer": 0.11198514148366656,
|
1691 |
+
"step": 25500
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 1.88,
|
1695 |
+
"learning_rate": 6.466894429292585e-07,
|
1696 |
+
"loss": 0.1627,
|
1697 |
+
"step": 25600
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.89,
|
1701 |
+
"learning_rate": 5.717656720276581e-07,
|
1702 |
+
"loss": 0.165,
|
1703 |
+
"step": 25700
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.89,
|
1707 |
+
"learning_rate": 5.014178026763216e-07,
|
1708 |
+
"loss": 0.1685,
|
1709 |
+
"step": 25800
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 1.9,
|
1713 |
+
"learning_rate": 4.356551849023648e-07,
|
1714 |
+
"loss": 0.1632,
|
1715 |
+
"step": 25900
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 1.91,
|
1719 |
+
"learning_rate": 3.7448655930113146e-07,
|
1720 |
+
"loss": 0.164,
|
1721 |
+
"step": 26000
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 1.91,
|
1725 |
+
"learning_rate": 3.179200558744649e-07,
|
1726 |
+
"loss": 0.1649,
|
1727 |
+
"step": 26100
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 1.92,
|
1731 |
+
"learning_rate": 2.6596319295015436e-07,
|
1732 |
+
"loss": 0.1583,
|
1733 |
+
"step": 26200
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.93,
|
1737 |
+
"learning_rate": 2.1862287618264806e-07,
|
1738 |
+
"loss": 0.1629,
|
1739 |
+
"step": 26300
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 1.94,
|
1743 |
+
"learning_rate": 1.7630967021918575e-07,
|
1744 |
+
"loss": 0.1608,
|
1745 |
+
"step": 26400
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.94,
|
1749 |
+
"learning_rate": 1.3817439628416527e-07,
|
1750 |
+
"loss": 0.1629,
|
1751 |
+
"step": 26500
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 1.95,
|
1755 |
+
"learning_rate": 1.0467265308166828e-07,
|
1756 |
+
"loss": 0.1656,
|
1757 |
+
"step": 26600
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 1.96,
|
1761 |
+
"learning_rate": 7.58088933720985e-08,
|
1762 |
+
"loss": 0.1638,
|
1763 |
+
"step": 26700
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 1.97,
|
1767 |
+
"learning_rate": 5.158695347542152e-08,
|
1768 |
+
"loss": 0.164,
|
1769 |
+
"step": 26800
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 1.97,
|
1773 |
+
"learning_rate": 3.2010052761280434e-08,
|
1774 |
+
"loss": 0.1632,
|
1775 |
+
"step": 26900
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.98,
|
1779 |
+
"learning_rate": 1.708079322109368e-08,
|
1780 |
+
"loss": 0.1664,
|
1781 |
+
"step": 27000
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 1.98,
|
1785 |
+
"eval_loss": 0.11697087436914444,
|
1786 |
+
"eval_runtime": 1037.0691,
|
1787 |
+
"eval_samples_per_second": 15.435,
|
1788 |
+
"eval_steps_per_second": 1.929,
|
1789 |
+
"eval_wer": 0.11169152190538621,
|
1790 |
+
"step": 27000
|
1791 |
+
}
|
1792 |
+
],
|
1793 |
+
"max_steps": 27260,
|
1794 |
+
"num_train_epochs": 2,
|
1795 |
+
"total_flos": 4.0022174178965815e+20,
|
1796 |
+
"trial_name": null,
|
1797 |
+
"trial_params": null
|
1798 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33687b9bde339fb2a61ab28ad3b77a61a2b72c0f63bd474a7eea4c3152b86aa6
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"=": 1, "@": 2, "[": 3, "]": 4, "_": 5, "`": 6, "a": 7, "b": 8, "c": 9, "d": 10, "e": 11, "f": 12, "g": 13, "h": 14, "i": 15, "j": 16, "k": 17, "l": 18, "m": 19, "n": 20, "o": 21, "p": 22, "q": 23, "r": 24, "s": 25, "t": 26, "u": 27, "v": 28, "w": 29, "x": 30, "y": 31, "z": 32, "¡": 33, "§": 34, "«": 35, "°": 36, "´": 37, "µ": 38, "·": 39, "»": 40, "×": 41, "ß": 42, "à": 43, "á": 44, "â": 45, "ã": 46, "ä": 47, "å": 48, "æ": 49, "ç": 50, "è": 51, "é": 52, "ê": 53, "ë": 54, "ì": 55, "í": 56, "î": 57, "ï": 58, "ð": 59, "ñ": 60, "ò": 61, "ó": 62, "ô": 63, "õ": 64, "ö": 65, "ø": 66, "ù": 67, "ú": 68, "û": 69, "ü": 70, "ý": 71, "þ": 72, "ā": 73, "ă": 74, "ą": 75, "ć": 76, "č": 77, "ď": 78, "đ": 79, "ē": 80, "ė": 81, "ę": 82, "ě": 83, "ğ": 84, "ġ": 85, "ħ": 86, "ī": 87, "ı": 88, "ł": 89, "ń": 90, "ņ": 91, "ň": 92, "ō": 93, "ŏ": 94, "ő": 95, "œ": 96, "ř": 97, "ś": 98, "ş": 99, "š": 100, "ť": 101, "ū": 102, "ů": 103, "ź": 104, "ż": 105, "ž": 106, "ơ": 107, "ǐ": 108, "ǔ": 109, "ș": 110, "ț": 111, "ə": 112, "ʻ": 113, "ʾ": 114, "ʿ": 115, "̆": 116, "̇": 117, "̥": 118, "а": 119, "в": 120, "е": 121, "и": 122, "к": 123, "м": 124, "о": 125, "р": 126, "с": 127, "ф": 128, "ч": 129, "ш": 130, "ѹ": 131, "א": 132, "ב": 133, "נ": 134, "ע": 135, "ש": 136, "་": 137, "ན": 138, "ḫ": 139, "ṟ": 140, "ṣ": 141, "ṭ": 142, "ạ": 143, "ả": 144, "ắ": 145, "ằ": 146, "ế": 147, "ễ": 148, "ệ": 149, "ọ": 150, "ồ": 151, "ộ": 152, "ụ": 153, "ứ": 154, "‑": 155, "‚": 156, "„": 157, "‟": 158, "′": 159, "″": 160, "‹": 161, "›": 162, "→": 163, "−": 164, "≡": 165, "⟨": 166, "⟩": 167, "カ": 168, "东": 169, "临": 170, "乡": 171, "关": 172, "合": 173, "城": 174, "孙": 175, "尣": 176, "幺": 177, "支": 178, "比": 179, "毛": 180, "泽": 181, "無": 182, "生": 183, "臣": 184, "辶": 185, "道": 186, "镇": 187, "黃": 188, "|": 0, "[UNK]": 189, "[PAD]": 190}
|