--- tags: - merge - mergekit - lazymergekit - meta-llama/Meta-Llama-3-8B-Instruct - meta-llama/Meta-Llama-3-8B-Instruct - PruneMe base_model: - meta-llama/Meta-Llama-3-8B-Instruct - meta-llama/Meta-Llama-3-8B-Instruct --- # meta-LLama3-8b-PruneME-TEST-22_30 This model was pruned after being analyzed with [PruneMe](https://github.com/arcee-ai/PruneMe) *INFO:root:Layer 22 to 30 has the minimum average distance of 0.26598974609375. Consider examining this layer more closely for potential optimization or removal.* meta-LLama3-8b-PruneME-TEST-22_30 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: meta-llama/Meta-Llama-3-8B-Instruct layer_range: [0, 22] - sources: - model: meta-llama/Meta-Llama-3-8B-Instruct layer_range: [30,32] merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/meta-LLama3-8b-PruneME-TEST-22_30" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```