--- tags: - merge - mergekit - lazymergekit - paulml/OGNO-7B - nlpguy/AlloyIngot - mlabonne/Monarch-7B base_model: - paulml/OGNO-7B - nlpguy/AlloyIngot - mlabonne/Monarch-7B --- # RandomMergeSparsifyWEIGHTED-7B-DARETIES RandomMergeSparsifyWEIGHTED-7B-DARETIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OGNO-7B](https://huggingface.co./paulml/OGNO-7B) * [nlpguy/AlloyIngot](https://huggingface.co./nlpguy/AlloyIngot) * [mlabonne/Monarch-7B](https://huggingface.co./mlabonne/Monarch-7B) ## 🧩 Configuration ```yaml models: - model: paulml/OGNO-7B parameters: density: [1, 0.7, 0.3] weight: [0, 0.3, 0.7, 1] - model: nlpguy/AlloyIngot parameters: density: [1, 0.7, 0.1] weight: [0, 0.25, 0.5, 1] - model: mlabonne/Monarch-7B parameters: weight: 0.33 density: 0.33 merge_method: dare_ties base_model: mlabonne/Monarch-7B parameters: int8_mask: true normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/RandomMergeSparsifyWEIGHTED-7B-DARETIES" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```