End of training
Browse files- README.md +23 -2
- all_results.json +15 -5
- eval_results.json +13 -0
- generation_config.json +0 -1
- train_results.json +5 -5
- trainer_state.json +12 -12
README.md
CHANGED
@@ -3,9 +3,23 @@ license: apache-2.0
|
|
3 |
base_model: google-t5/t5-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
6 |
model-index:
|
7 |
- name: pep_summarization
|
8 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -13,7 +27,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# pep_summarization
|
15 |
|
16 |
-
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
|
|
3 |
base_model: google-t5/t5-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fedora-copr/pep-sum
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
model-index:
|
11 |
- name: pep_summarization
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Summarization
|
15 |
+
type: summarization
|
16 |
+
dataset:
|
17 |
+
name: fedora-copr/pep-sum
|
18 |
+
type: fedora-copr/pep-sum
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 87.9903
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
27 |
|
28 |
# pep_summarization
|
29 |
|
30 |
+
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the fedora-copr/pep-sum dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.0348
|
33 |
+
- Rouge1: 87.9903
|
34 |
+
- Rouge2: 87.5298
|
35 |
+
- Rougel: 88.0594
|
36 |
+
- Rougelsum: 87.9148
|
37 |
+
- Gen Len: 67.8551
|
38 |
|
39 |
## Model description
|
40 |
|
all_results.json
CHANGED
@@ -1,8 +1,18 @@
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
-
"
|
4 |
-
"
|
5 |
-
"
|
6 |
-
"
|
7 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
+
"eval_gen_len": 67.85507246376811,
|
4 |
+
"eval_loss": 0.03478159010410309,
|
5 |
+
"eval_rouge1": 87.9903,
|
6 |
+
"eval_rouge2": 87.5298,
|
7 |
+
"eval_rougeL": 88.0594,
|
8 |
+
"eval_rougeLsum": 87.9148,
|
9 |
+
"eval_runtime": 11.488,
|
10 |
+
"eval_samples": 69,
|
11 |
+
"eval_samples_per_second": 6.006,
|
12 |
+
"eval_steps_per_second": 1.567,
|
13 |
+
"train_loss": 0.04075576412504998,
|
14 |
+
"train_runtime": 147.9128,
|
15 |
+
"train_samples": 276,
|
16 |
+
"train_samples_per_second": 18.66,
|
17 |
+
"train_steps_per_second": 4.665
|
18 |
}
|
eval_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_gen_len": 67.85507246376811,
|
4 |
+
"eval_loss": 0.03478159010410309,
|
5 |
+
"eval_rouge1": 87.9903,
|
6 |
+
"eval_rouge2": 87.5298,
|
7 |
+
"eval_rougeL": 88.0594,
|
8 |
+
"eval_rougeLsum": 87.9148,
|
9 |
+
"eval_runtime": 11.488,
|
10 |
+
"eval_samples": 69,
|
11 |
+
"eval_samples_per_second": 6.006,
|
12 |
+
"eval_steps_per_second": 1.567
|
13 |
+
}
|
generation_config.json
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_from_model_config": true,
|
3 |
"decoder_start_token_id": 0,
|
4 |
"eos_token_id": 1,
|
5 |
"pad_token_id": 0,
|
|
|
1 |
{
|
|
|
2 |
"decoder_start_token_id": 0,
|
3 |
"eos_token_id": 1,
|
4 |
"pad_token_id": 0,
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
-
"train_samples":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
+
"train_loss": 0.04075576412504998,
|
4 |
+
"train_runtime": 147.9128,
|
5 |
+
"train_samples": 276,
|
6 |
+
"train_samples_per_second": 18.66,
|
7 |
+
"train_steps_per_second": 4.665
|
8 |
}
|
trainer_state.json
CHANGED
@@ -3,33 +3,33 @@
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch":
|
13 |
-
"learning_rate":
|
14 |
-
"loss": 0.
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 10.0,
|
19 |
-
"step":
|
20 |
-
"total_flos":
|
21 |
-
"train_loss": 0.
|
22 |
-
"train_runtime":
|
23 |
-
"train_samples_per_second":
|
24 |
-
"train_steps_per_second":
|
25 |
}
|
26 |
],
|
27 |
"logging_steps": 500,
|
28 |
-
"max_steps":
|
29 |
"num_input_tokens_seen": 0,
|
30 |
"num_train_epochs": 10,
|
31 |
"save_steps": 500,
|
32 |
-
"total_flos":
|
33 |
"train_batch_size": 4,
|
34 |
"trial_name": null,
|
35 |
"trial_params": null
|
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 690,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 7.25,
|
13 |
+
"learning_rate": 1.3768115942028985e-05,
|
14 |
+
"loss": 0.0529,
|
15 |
"step": 500
|
16 |
},
|
17 |
{
|
18 |
"epoch": 10.0,
|
19 |
+
"step": 690,
|
20 |
+
"total_flos": 3359758649241600.0,
|
21 |
+
"train_loss": 0.04075576412504998,
|
22 |
+
"train_runtime": 147.9128,
|
23 |
+
"train_samples_per_second": 18.66,
|
24 |
+
"train_steps_per_second": 4.665
|
25 |
}
|
26 |
],
|
27 |
"logging_steps": 500,
|
28 |
+
"max_steps": 690,
|
29 |
"num_input_tokens_seen": 0,
|
30 |
"num_train_epochs": 10,
|
31 |
"save_steps": 500,
|
32 |
+
"total_flos": 3359758649241600.0,
|
33 |
"train_batch_size": 4,
|
34 |
"trial_name": null,
|
35 |
"trial_params": null
|