File size: 1,679 Bytes
fb5c105
8fb43da
 
fb5c105
815f90a
fb5c105
8fb43da
fb5c105
4151aee
 
fb5c105
4151aee
fb5c105
 
 
4151aee
 
fb5c105
4151aee
 
 
 
 
 
fb5c105
 
 
4151aee
fb5c105
4151aee
fb5c105
4151aee
fb5c105
d339892
4151aee
 
fb5c105
 
 
 
 
 
 
 
 
 
 
 
4151aee
 
fb5c105
 
 
4151aee
 
 
 
 
 
 
 
fb5c105
 
815f90a
fb5c105
815f90a
fb5c105
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny Metal - Juan Pablo Diaz
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Metal - Juan Pablo Diaz

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Gutural Scream and Metal Vocals dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6780
- Wer: 79.9061

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0844        | 9.62  | 1000 | 1.3967          | 104.6055 |
| 0.0018        | 19.23 | 2000 | 1.5861          | 93.5465  |
| 0.0008        | 28.85 | 3000 | 1.6552          | 78.9381  |
| 0.0006        | 38.46 | 4000 | 1.6780          | 79.9061  |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3