Joosep Pata
commited on
Commit
·
d8246d6
1
Parent(s):
6c752bd
update readme
Browse files- README.md +2 -0
- cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md +189 -0
README.md
CHANGED
@@ -19,7 +19,9 @@ Please see the linked model cards below for more details.
|
|
19 |
- [clic/clusters/v1.9.0](clic/clusters/v1.9.0/README.md)
|
20 |
- [clic/clusters/v2.0.0](clic/clusters/v2.0.0/README.md)
|
21 |
- [clic/clusters/v2.1.0](clic/clusters/v2.1.0/pyg-clic_20241106_104416_929167/README.md)
|
|
|
22 |
- [cms/v2.1.0](cms/v2.1.0/pyg-cms_20241101_090645_682892/README.md)
|
|
|
23 |
|
24 |
|
25 |
## Papers
|
|
|
19 |
- [clic/clusters/v1.9.0](clic/clusters/v1.9.0/README.md)
|
20 |
- [clic/clusters/v2.0.0](clic/clusters/v2.0.0/README.md)
|
21 |
- [clic/clusters/v2.1.0](clic/clusters/v2.1.0/pyg-clic_20241106_104416_929167/README.md)
|
22 |
+
- [clic/clusters/v2.2.0](clic/clusters/v2.2.0/pyg-clic_20250106_193536_269746/README.md)
|
23 |
- [cms/v2.1.0](cms/v2.1.0/pyg-cms_20241101_090645_682892/README.md)
|
24 |
+
- [cms/v2.2.0](cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md)
|
25 |
|
26 |
|
27 |
## Papers
|
cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Card for mlpf-cms-v2.2.0
|
2 |
+
|
3 |
+
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector.
|
4 |
+
The primary difference with respect to v2.2.0 is the inclusion of the sqrt(pt) weight term in the pT and energy regression loss.
|
5 |
+
Additionally, the model has been scaled down to ~5M parameters (previously ~100M) for more efficient inference.
|
6 |
+
|
7 |
+
## Model Details
|
8 |
+
|
9 |
+
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
|
10 |
+
|
11 |
+
<details>
|
12 |
+
<summary>Jet performance</summary>
|
13 |
+
|
14 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_qcd/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
15 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ttbar/jet_response_iqr_over_med_pt.png" alt="qq jet resolution" width="300"/>
|
16 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ztt/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
17 |
+
|
18 |
+
</details>
|
19 |
+
|
20 |
+
<details>
|
21 |
+
<summary>MET performance</summary>
|
22 |
+
|
23 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_qcd/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
24 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ttbar/met_response_iqr_over_med.png" alt="qq MET resolution" width="300"/>
|
25 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ztt/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
26 |
+
|
27 |
+
</details>
|
28 |
+
|
29 |
+
### Model Description
|
30 |
+
|
31 |
+
- **Developed by:** CMS MLPF Team
|
32 |
+
- **Model type:** transformer
|
33 |
+
- **License:** Apache License
|
34 |
+
|
35 |
+
### Model Sources
|
36 |
+
|
37 |
+
- **Repository:** https://github.com/jpata/particleflow/releases/tag/v2.2.0
|
38 |
+
|
39 |
+
## Uses
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation within the CMS collaboration.
|
43 |
+
|
44 |
+
### Out-of-Scope Use
|
45 |
+
|
46 |
+
This model is not intended for physics measurements on real data or for use outside the CMS collaboration.
|
47 |
+
|
48 |
+
## Bias, Risks, and Limitations
|
49 |
+
|
50 |
+
The model has only been trained on simulation data and has not been validated against real data.
|
51 |
+
The model has not been peer reviewed or published in a peer-reviewed journal.
|
52 |
+
|
53 |
+
## How to Get Started with the Model
|
54 |
+
|
55 |
+
Use the code below to get started with the model.
|
56 |
+
|
57 |
+
```
|
58 |
+
#get the code
|
59 |
+
git clone https://github.com/jpata/particleflow
|
60 |
+
cd particleflow
|
61 |
+
git checkout v2.2.0
|
62 |
+
|
63 |
+
#get the models
|
64 |
+
git clone https://huggingface.co/jpata/particleflow models
|
65 |
+
```
|
66 |
+
|
67 |
+
## Training Details
|
68 |
+
Trained on 1x A100 for 5 epochs over ~2 days.
|
69 |
+
|
70 |
+
### Training Data
|
71 |
+
The following datasets were used:
|
72 |
+
```
|
73 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/1/2.5.0
|
74 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/2/2.5.0
|
75 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/3/2.5.0
|
76 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/4/2.5.0
|
77 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/5/2.5.0
|
78 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/6/2.5.0
|
79 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/7/2.5.0
|
80 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/8/2.5.0
|
81 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/9/2.5.0
|
82 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/10/2.5.0
|
83 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/1/2.5.0
|
84 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/2/2.5.0
|
85 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/3/2.5.0
|
86 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/4/2.5.0
|
87 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/5/2.5.0
|
88 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/6/2.5.0
|
89 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/7/2.5.0
|
90 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/8/2.5.0
|
91 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/9/2.5.0
|
92 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/10/2.5.0
|
93 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/1/2.5.0
|
94 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/2/2.5.0
|
95 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/3/2.5.0
|
96 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/4/2.5.0
|
97 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/5/2.5.0
|
98 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/6/2.5.0
|
99 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/7/2.5.0
|
100 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/8/2.5.0
|
101 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/9/2.5.0
|
102 |
+
19G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/10/2.5.0
|
103 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/1/2.5.0
|
104 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/2/2.5.0
|
105 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/3/2.5.0
|
106 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/4/2.5.0
|
107 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/5/2.5.0
|
108 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/6/2.5.0
|
109 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/7/2.5.0
|
110 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/8/2.5.0
|
111 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/9/2.5.0
|
112 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/10/2.5.0
|
113 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/1/2.5.0
|
114 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/2/2.5.0
|
115 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/3/2.5.0
|
116 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/4/2.5.0
|
117 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/5/2.5.0
|
118 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/6/2.5.0
|
119 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/7/2.5.0
|
120 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/8/2.5.0
|
121 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/9/2.5.0
|
122 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/10/2.5.0
|
123 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/1/2.5.0
|
124 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/2/2.5.0
|
125 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/3/2.5.0
|
126 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/4/2.5.0
|
127 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/5/2.5.0
|
128 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/6/2.5.0
|
129 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/7/2.5.0
|
130 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/8/2.5.0
|
131 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/9/2.5.0
|
132 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/10/2.5.0
|
133 |
+
```
|
134 |
+
|
135 |
+
## Training Procedure
|
136 |
+
|
137 |
+
```bash
|
138 |
+
#!/bin/bash
|
139 |
+
#SBATCH --partition gpu
|
140 |
+
#SBATCH --gres gpu:a100:1
|
141 |
+
#SBATCH --mem-per-gpu 300G
|
142 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
143 |
+
|
144 |
+
IMG=/home/software/singularity/pytorch.simg:2024-12-03
|
145 |
+
cd ~/particleflow
|
146 |
+
|
147 |
+
ulimit -n 100000
|
148 |
+
singularity exec -B /scratch/persistent --nv \
|
149 |
+
--env PYTHONPATH=`pwd` \
|
150 |
+
--env KERAS_BACKEND=torch \
|
151 |
+
$IMG python3 mlpf/pipeline.py --gpus 1 \
|
152 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
|
153 |
+
--train --conv-type attention \
|
154 |
+
--gpu-batch-multiplier 5 --checkpoint-freq 1 --num-workers 8 --prefetch-factor 50 --comet --ntest 1000 --test-datasets cms_pf_qcd_nopu
|
155 |
+
```
|
156 |
+
|
157 |
+
## Evaluation
|
158 |
+
```bash
|
159 |
+
#!/bin/bash
|
160 |
+
#SBATCH --partition gpu
|
161 |
+
#SBATCH --gres gpu:mig:1
|
162 |
+
#SBATCH --mem-per-gpu 100G
|
163 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
164 |
+
|
165 |
+
IMG=/home/software/singularity/pytorch.simg:2024-08-18
|
166 |
+
cd ~/particleflow
|
167 |
+
|
168 |
+
WEIGHTS=experiments/pyg-cms_20241212_101648_120237/checkpoints/checkpoint-05-3.498507.pth
|
169 |
+
DATASET=$1
|
170 |
+
env
|
171 |
+
singularity exec -B /local -B /scratch/persistent --nv \
|
172 |
+
--env PYTHONPATH=`pwd` \
|
173 |
+
--env KERAS_BACKEND=torch \
|
174 |
+
$IMG python mlpf/pipeline.py --gpus 1 \
|
175 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
|
176 |
+
--test --make-plots --gpu-batch-multiplier 2 --load $WEIGHTS --ntest 10000 --dtype bfloat16 --num-workers 1 --prefetch-factor 10 --test-datasets $DATASET
|
177 |
+
```
|
178 |
+
## Citation
|
179 |
+
|
180 |
+
## Glossary
|
181 |
+
|
182 |
+
- PF: particle flow reconstruction
|
183 |
+
- MLPF: machine learning for particle flow
|
184 |
+
- CMS: Compact Muon Solenoid
|
185 |
+
|
186 |
+
## Model Card Contact
|
187 |
+
|
188 |
+
Joosep Pata, [email protected]
|
189 |
+
|