Joosep Pata
add CMS benchmark model
fd4e297
raw
history blame
6.41 kB
backend: tensorflow
cache: caches/cms_gen
dataset:
schema: cms
target_particles: gen
num_input_features: 42
# NONE = 0,
# TRACK = 1,
# PS1 = 2,
# PS2 = 3,
# ECAL = 4,
# HCAL = 5,
# GSF = 6,
# BREM = 7,
# HFEM = 8,
# HFHAD = 9,
# SC = 10,
# HO = 11,
num_input_classes: 12
#(none=0, ch.had=1, n.had=2, hfem=3, hfhad=4, gamma=5, e=6, mu=7)
num_output_classes: 8
padded_num_elem_size: 6400
cls_weight_by_pt: no
reg_weight_by_pt: no
enable_tfds_caching: no
loss:
classification_loss_coef: 100.0
charge_loss_coef: 1.0
pt_loss_coef: 1.0
eta_loss_coef: 1.0
sin_phi_loss_coef: 1.0
cos_phi_loss_coef: 1.0
energy_loss_coef: 1.0
cls_loss:
type: SigmoidFocalCrossEntropy
from_logits: yes
gamma: 2.0
charge_loss:
type: CategoricalCrossentropy
from_logits: yes
energy_loss:
type: Huber
pt_loss:
type: Huber
sin_phi_loss:
type: Huber
delta: 0.1
cos_phi_loss:
type: Huber
delta: 0.1
eta_loss:
type: Huber
delta: 0.1
event_loss: none #none, sliced_wasserstein, gen_jet_logcosh, gen_jet_mse, hist_2d
event_loss_coef: 1.0
met_loss: none
met_loss_coef: 1.0
tensorflow:
eager: no
setup:
train: yes
weights:
weights_config:
lr: 0.00005
num_epochs: 55
dtype: float32
trainable:
lr_schedule: none # cosinedecay, exponentialdecay, onecycle, none
optimizer: adam # adam, adamw, sgd
horovod_enabled: no
cls_output_as_logits: yes
#if enabled, do not create LSH bins for small graphs (less than one bin size)
#enabling results in some speedup for gun samples, but must be disabled for XLA
small_graph_opt: yes
use_normalizer: no
batching:
# if enabled, use dynamic batching instead of the fixed-size batches configured in batch_per_gpu
bucket_by_sequence_length: yes
bucket_batch_sizes: auto
batch_multiplier: 1
optimizer:
adam:
amsgrad: no
adamw:
amsgrad: yes
weight_decay: 0.001
sgd:
nesterov: no
momentum: 0.9
# LR Schedules
exponentialdecay:
decay_steps: 2000
decay_rate: 0.99
staircase: yes
onecycle:
mom_min: 0.85
mom_max: 0.95
warmup_ratio: 0.3
div_factor: 25.0
final_div: 100000.0
parameters:
model: gnn_dense
input_encoding: cms
node_update_mode: additive
do_node_encoding: yes
node_encoding_hidden_dim: 512
combined_graph_layer:
bin_size: 640
max_num_bins: 200
distance_dim: 128
layernorm: yes
dropout: 0.0
dist_activation: elu
ffn_dist_num_layers: 2
ffn_dist_hidden_dim: 128
# GCN
kernel:
type: NodePairGaussianKernel
dist_mult: 0.1
clip_value_low: 0.0
dist_norm: l2
num_node_messages: 2
node_message:
type: GHConvDense
output_dim: 512
activation: elu
#if this is enabled, it will break float16 training
normalize_degrees: no
activation: elu
num_graph_layers_id: 3
num_graph_layers_reg: 3
output_decoding:
activation: elu
regression_use_classification: yes
dropout: 0.1
pt_as_correction: yes
id_dim_decrease: yes
charge_dim_decrease: yes
pt_dim_decrease: yes
eta_dim_decrease: yes
phi_dim_decrease: yes
energy_dim_decrease: yes
id_hidden_dim: 512
charge_hidden_dim: 256
pt_hidden_dim: 512
eta_hidden_dim: 256
phi_hidden_dim: 256
energy_hidden_dim: 512
id_num_layers: 3
charge_num_layers: 2
pt_num_layers: 2
eta_num_layers: 2
phi_num_layers: 2
energy_num_layers: 2
layernorm: yes
mask_reg_cls0: yes
skip_connection: no
debug: no
timing:
num_ev: 100
num_iter: 3
callbacks:
checkpoint:
monitor: "val_loss"
plot_freq: 1
tensorboard:
dump_history: yes
hist_freq: 1
hypertune:
algorithm: hyperband # random, bayesian, hyperband
random:
objective: val_loss
max_trials: 100
bayesian:
objective: val_loss
max_trials: 100
num_initial_points: 2
hyperband:
objective: val_loss
max_epochs: 10
factor: 3
iterations: 1
executions_per_trial: 1
raytune:
local_dir: # Note: please specify an absolute path
sched: asha # asha, hyperband
search_alg: # bayes, bohb, hyperopt, nevergrad, scikit
default_metric: "val_loss"
default_mode: "min"
# Tune schedule specific parameters
asha:
max_t: 200
reduction_factor: 4
brackets: 1
grace_period: 10
hyperband:
max_t: 200
reduction_factor: 4
hyperopt:
n_random_steps: 10
nevergrad:
n_random_steps: 10
train_test_datasets:
multiparticlegun:
batch_per_gpu: 1
event_pad_size: -1
datasets:
- cms_pf_multi_particle_gun
physical:
batch_per_gpu: 1
event_pad_size: -1
datasets:
- cms_pf_ttbar
- cms_pf_ztt
- cms_pf_qcd
- cms_pf_qcd_high_pt
- cms_pf_sms_t1tttt
gun:
batch_per_gpu: 50
event_pad_size: -1
datasets:
- cms_pf_single_electron
- cms_pf_single_gamma
- cms_pf_single_neutron
- cms_pf_single_pi0
- cms_pf_single_pi
- cms_pf_single_tau
- cms_pf_single_mu
- cms_pf_single_proton
evaluation_datasets:
cms_pf_qcd_high_pt:
batch_size: 5
num_events: -1
cms_pf_single_neutron:
batch_size: 100
num_events: -1
validation_dataset: cms_pf_qcd_high_pt
validation_batch_size: 5
validation_num_events: 500
evaluation_jet_algo: antikt_algorithm
datasets:
cms_pf_ttbar:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_ztt:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_qcd:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_qcd_high_pt:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_electron:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_gamma:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_pi0:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_neutron:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_pi:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_tau:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_mu:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_single_proton:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_multi_particle_gun:
version: 1.6.0
data_dir:
manual_dir:
cms_pf_sms_t1tttt:
version: 1.6.0
data_dir:
manual_dir: