File size: 2,943 Bytes
06f9c9d
c2ce1ee
 
06f9c9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
- precision
- recall
model-index:
- name: whisper-tiny-oshiwambo-speech
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-oshiwambo-speech

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1409
- Wer: 44.7619
- Cer: 30.8962
- Word Acc: 64.4444
- Sent Acc: 2.8571
- Precision: 0.6444
- Recall: 0.5524
- F1 Score: 0.5949

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 10000

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     | Cer     | Word Acc | Sent Acc | Precision | Recall | F1 Score |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:|:--------:|:--------:|:---------:|:------:|:--------:|
| 0.0098        | 117.65  | 1000  | 0.0976          | 37.1429 | 29.0094 | 66.6667  | 8.5714   | 0.6538    | 0.6476 | 0.6507   |
| 0.0105        | 235.29  | 2000  | 0.1061          | 41.9048 | 33.0189 | 63.6364  | 2.8571   | 0.6238    | 0.6    | 0.6117   |
| 0.0105        | 352.94  | 3000  | 0.1134          | 37.1429 | 26.8868 | 66.6667  | 5.7143   | 0.6667    | 0.6286 | 0.6471   |
| 0.0091        | 470.59  | 4000  | 0.1222          | 37.1429 | 25.7075 | 66.6667  | 5.7143   | 0.6667    | 0.6286 | 0.6471   |
| 0.0098        | 588.24  | 5000  | 0.1265          | 40.0    | 28.3019 | 65.625   | 2.8571   | 0.6562    | 0.6    | 0.6269   |
| 0.0094        | 705.88  | 6000  | 0.1314          | 42.8571 | 30.8962 | 64.5161  | 2.8571   | 0.6452    | 0.5714 | 0.6061   |
| 0.0093        | 823.53  | 7000  | 0.1366          | 42.8571 | 29.2453 | 64.5161  | 2.8571   | 0.6452    | 0.5714 | 0.6061   |
| 0.0094        | 941.18  | 8000  | 0.1360          | 45.7143 | 31.8396 | 63.3333  | 0.0      | 0.6333    | 0.5429 | 0.5846   |
| 0.01          | 1058.82 | 9000  | 0.1394          | 44.7619 | 30.8962 | 64.4444  | 2.8571   | 0.6444    | 0.5524 | 0.5949   |
| 0.0087        | 1176.47 | 10000 | 0.1409          | 44.7619 | 30.8962 | 64.4444  | 2.8571   | 0.6444    | 0.5524 | 0.5949   |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3