File size: 1,968 Bytes
71290ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: amtibot_bart
  results: []
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# amtibot_bart

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5905
- Rouge1: 0.4051
- Rouge2: 0.195
- Rougel: 0.3054
- Rougelsum: 0.3053
- Gen Len: 65.7532

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.02
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 0.9351 | 9    | 1.6594          | 0.4057 | 0.1833 | 0.3052 | 0.3048    | 67.9481 |
| 2.11          | 1.9740 | 19   | 1.6149          | 0.3938 | 0.192  | 0.3063 | 0.3058    | 64.8571 |
| 1.554         | 2.9091 | 28   | 1.5842          | 0.3956 | 0.1872 | 0.3039 | 0.3033    | 65.8182 |
| 1.3821        | 3.7403 | 36   | 1.5905          | 0.4051 | 0.195  | 0.3054 | 0.3053    | 65.7532 |


### Framework versions

- PEFT 0.4.0
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1