--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.8908045977011494 - name: Recall type: recall value: 0.9056303116147308 - name: F1 type: f1 value: 0.8981562774363476 - name: Accuracy type: accuracy value: 0.9781845590610531 --- # bert-base-uncased-conll2003 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1539 - Precision: 0.8908 - Recall: 0.9056 - F1: 0.8982 - Accuracy: 0.9782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0641 | 1.0 | 3922 | 0.1398 | 0.8868 | 0.9044 | 0.8955 | 0.9776 | | 0.0262 | 2.0 | 7844 | 0.1539 | 0.8908 | 0.9056 | 0.8982 | 0.9782 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.2.2 - Datasets 2.20.0 - Tokenizers 0.13.3