--- license: mit tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem args: selective metrics: - name: Precision type: precision value: 0.8 - name: Recall type: recall value: 0.8764044943820225 - name: F1 type: f1 value: 0.8364611260053619 - name: Accuracy type: accuracy value: 0.9764089121887287 --- # bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co./neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Precision: 0.8 - Recall: 0.8764 - F1: 0.8365 - Accuracy: 0.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.055 | 1.0 | 2517 | 0.0934 | 0.81 | 0.9101 | 0.8571 | 0.9699 | | 0.0236 | 2.0 | 5034 | 0.0883 | 0.8307 | 0.8820 | 0.8556 | 0.9751 | | 0.0129 | 3.0 | 7551 | 0.1160 | 0.8 | 0.8764 | 0.8365 | 0.9764 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1