File size: 4,162 Bytes
b99d434 78be4f2 b99d434 78be4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: scenario_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario_4
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co./microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1764
- Accuracy: 0.9704
- F1: 0.9704
- Precision: 0.9710
- Recall: 0.9704
- Accuracy Label Test: 0.9879
- Accuracy Label Train: 0.9536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Test | Accuracy Label Train |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:--------------------:|
| 0.5515 | 0.1579 | 100 | 0.5194 | 0.7579 | 0.7415 | 0.8352 | 0.7579 | 0.5070 | 0.9992 |
| 0.2205 | 0.3157 | 200 | 0.2537 | 0.9300 | 0.9298 | 0.9361 | 0.9300 | 0.9883 | 0.8739 |
| 0.1106 | 0.4736 | 300 | 0.3450 | 0.9129 | 0.9124 | 0.9248 | 0.9129 | 0.9960 | 0.8329 |
| 0.0384 | 0.6314 | 400 | 0.1408 | 0.9683 | 0.9683 | 0.9687 | 0.9683 | 0.9835 | 0.9536 |
| 0.0631 | 0.7893 | 500 | 0.1517 | 0.9631 | 0.9631 | 0.9645 | 0.9631 | 0.9895 | 0.9377 |
| 0.0276 | 0.9471 | 600 | 0.3649 | 0.9387 | 0.9386 | 0.9444 | 0.9387 | 0.9948 | 0.8847 |
| 0.0245 | 1.1050 | 700 | 0.1339 | 0.9702 | 0.9702 | 0.9702 | 0.9702 | 0.9727 | 0.9679 |
| 0.0519 | 1.2628 | 800 | 0.4945 | 0.9186 | 0.9182 | 0.9299 | 0.9186 | 0.9992 | 0.8410 |
| 0.02 | 1.4207 | 900 | 0.2637 | 0.9549 | 0.9548 | 0.9580 | 0.9549 | 0.9960 | 0.9153 |
| 0.0325 | 1.5785 | 1000 | 0.1165 | 0.9708 | 0.9708 | 0.9712 | 0.9708 | 0.9851 | 0.9571 |
| 0.016 | 1.7364 | 1100 | 0.1007 | 0.9692 | 0.9692 | 0.9697 | 0.9692 | 0.9530 | 0.9849 |
| 0.0068 | 1.8942 | 1200 | 0.1679 | 0.9690 | 0.9690 | 0.9697 | 0.9690 | 0.9871 | 0.9516 |
| 0.0042 | 2.0521 | 1300 | 0.1182 | 0.9734 | 0.9734 | 0.9734 | 0.9734 | 0.9723 | 0.9745 |
| 0.0005 | 2.2099 | 1400 | 0.1432 | 0.9730 | 0.9730 | 0.9731 | 0.9730 | 0.9799 | 0.9663 |
| 0.0182 | 2.3678 | 1500 | 0.1460 | 0.9718 | 0.9718 | 0.9723 | 0.9718 | 0.9871 | 0.9571 |
| 0.0004 | 2.5257 | 1600 | 0.1383 | 0.9732 | 0.9732 | 0.9734 | 0.9732 | 0.9843 | 0.9625 |
| 0.0003 | 2.6835 | 1700 | 0.1381 | 0.9744 | 0.9744 | 0.9745 | 0.9744 | 0.9831 | 0.9660 |
| 0.0002 | 2.8414 | 1800 | 0.1599 | 0.9724 | 0.9724 | 0.9728 | 0.9724 | 0.9863 | 0.9590 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|