Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.44 +/- 17.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ee78184c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ee7818550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ee78185e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ee7818670>", "_build": "<function ActorCriticPolicy._build at 0x7f3ee7818700>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ee7818790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ee7818820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ee78188b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ee7818940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ee78189d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ee7818a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ee7818af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ee780be40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682754427459772955, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACC2Kb44fJ67+t62OWIJBjfUQOI8/eXXuAAAgD8AAIA/moeLvSmEPrqJDsq5oCqKtqpfmbtokO84AACAPwAAgD/T6nU+E0yBP+WmbzrWi6O+gtC8PaqnHj0AAAAAAAAAAM1w2TzDBU664gWCu+ogA7eIBgO7GqGXOgAAgD8AAIA/5iVQvbr5CD5YVNw814+AvhVuDrwRToQ9AAAAAAAAAAAz5ty89od9PfqHgL2xUT++FlzLvT8XIbwAAAAAAAAAAM0bxbwUcoO61tUvOAC1VrJF+jG7oqlItwAAgD8AAIA/zkgIv0fLUr7by+w8Wi43OkttWj47YEY8AAAAAAAAAADA++e97KGouYV8XTqvwsW2SeHtuw/ngrkAAIA/AACAP2asAr5cfQ87/cpRu98+MDg0L5y8e5eHOgAAgD8AAIA/GrYXvpQeizuOfoK1kw8WMzcDM70YyM40AACAPwAAgD+acak89khXumgrnLvVUjI3KpMbuwr/n7YAAIA/AACAP5NNDr49ij44fqRrOq/IF7iZjxS85ieHuQAAgD8AAIA/89yRvQrXPjhZZpk4Jl4kM3d5GDu7Ora3AACAPwAAgD/mxys9OOzqPU75+73Z15e+LOSTvTN0izoAAAAAAAAAACZks717fpS6gjkjOVPxNDXLho+6CwpMuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr13acNgZZ0CUhpRSlIwBbJRN6AOMAXSUR0CTVGRu0kWzdX2UKGgGaAloD0MIkUdwI2XLYkCUhpRSlGgVTegDaBZHQJNX8V8CxNZ1fZQoaAZoCWgPQwhtVKcD2fZgQJSGlFKUaBVN6ANoFkdAk3GblA/s3XV9lChoBmgJaA9DCN1B7EyhbGJAlIaUUpRoFU3oA2gWR0CTet0VJtiydX2UKGgGaAloD0MIgEkqU0w9YkCUhpRSlGgVTegDaBZHQJOAmAWi1zB1fZQoaAZoCWgPQwgnbD8Z43JnQJSGlFKUaBVN6ANoFkdAk4qd1EE1VHV9lChoBmgJaA9DCI3ttaD3ImdAlIaUUpRoFU3oA2gWR0CTk8e3QUpNdX2UKGgGaAloD0MI/te5aTP2Y0CUhpRSlGgVTegDaBZHQJOUChAWznl1fZQoaAZoCWgPQwi/SGjLOU1kQJSGlFKUaBVN6ANoFkdAk52klRgqmXV9lChoBmgJaA9DCMWrrG0KLmVAlIaUUpRoFU3oA2gWR0CToEFuejEfdX2UKGgGaAloD0MIZvfkYSFCZECUhpRSlGgVTegDaBZHQJOj9vUBnzx1fZQoaAZoCWgPQwgQW3o0Vb5oQJSGlFKUaBVN6ANoFkdAk6SIeYD1XnV9lChoBmgJaA9DCKX3ja89GWZAlIaUUpRoFU3oA2gWR0CTpOuL74zrdX2UKGgGaAloD0MIC9XNxV/oZUCUhpRSlGgVTegDaBZHQJOljWTX8O11fZQoaAZoCWgPQwiZgcr4925hQJSGlFKUaBVN6ANoFkdAk6XE6tDD0nV9lChoBmgJaA9DCGO5pdWQJ2hAlIaUUpRoFU3oA2gWR0CTqdFuvUz9dX2UKGgGaAloD0MI97AXCth7ZUCUhpRSlGgVTegDaBZHQJOqCVNYbKl1fZQoaAZoCWgPQwilaOVeYMpnQJSGlFKUaBVN6ANoFkdAk60lpPAO8XV9lChoBmgJaA9DCJCF6BA4wWFAlIaUUpRoFU3oA2gWR0CTwbnWattAdX2UKGgGaAloD0MIJuMYyR4JYkCUhpRSlGgVTegDaBZHQJPK5ORDCxh1fZQoaAZoCWgPQwg0MPKypkplQJSGlFKUaBVN6ANoFkdAk9K5NXYDknV9lChoBmgJaA9DCEfp0r+kTGNAlIaUUpRoFU3oA2gWR0CT4EqZ+hGpdX2UKGgGaAloD0MIsOYAwZx2YUCUhpRSlGgVTegDaBZHQJPo4xoIv8J1fZQoaAZoCWgPQwjylNV0PYliQJSGlFKUaBVN6ANoFkdAk+ke8f3evnV9lChoBmgJaA9DCIkkehnFr2NAlIaUUpRoFU3oA2gWR0CT8Jcv/R3NdX2UKGgGaAloD0MIYYvdPitlZECUhpRSlGgVTegDaBZHQJPybAqNIbx1fZQoaAZoCWgPQwiHakqyjsBmQJSGlFKUaBVN6ANoFkdAk/ViYCyQgnV9lChoBmgJaA9DCH9skh9xtGNAlIaUUpRoFU3oA2gWR0CT9fEFW4mUdX2UKGgGaAloD0MIOGbZk0BLZkCUhpRSlGgVTegDaBZHQJP2UOBlMAZ1fZQoaAZoCWgPQwju6H+5FmdmQJSGlFKUaBVN6ANoFkdAk/bt2X9it3V9lChoBmgJaA9DCH1Z2qk5zGFAlIaUUpRoFU3oA2gWR0CT9yNahYeUdX2UKGgGaAloD0MIPfGcLSDxYUCUhpRSlGgVTegDaBZHQJP7MYht+Ct1fZQoaAZoCWgPQwjlXmBWqF9gQJSGlFKUaBVN6ANoFkdAk/tqD5CWvHV9lChoBmgJaA9DCBGmKJfGjl9AlIaUUpRoFU3oA2gWR0CT/swHJLdvdX2UKGgGaAloD0MInPhqR/FOaECUhpRSlGgVTegDaBZHQJQDZsqJ/G51fZQoaAZoCWgPQwhgrkUL0HReQJSGlFKUaBVN6ANoFkdAlCMMWbgCOnV9lChoBmgJaA9DCH7iAPp9YV1AlIaUUpRoFU3oA2gWR0CUKUS88La3dX2UKGgGaAloD0MIFHtoH6vKYECUhpRSlGgVTegDaBZHQJQz5xWDHwR1fZQoaAZoCWgPQwjGavP/KsVmQJSGlFKUaBVN6ANoFkdAlDyK+BYms3V9lChoBmgJaA9DCMTSwI/qIGRAlIaUUpRoFU3oA2gWR0CUPMDtw71adX2UKGgGaAloD0MITHDqA8nsYkCUhpRSlGgVTegDaBZHQJRGGECeVcF1fZQoaAZoCWgPQwisAUpDDU5kQJSGlFKUaBVN6ANoFkdAlEieaa1CxHV9lChoBmgJaA9DCJMa2gDsD2VAlIaUUpRoFU3oA2gWR0CUTIboKUmldX2UKGgGaAloD0MIEaYol0YdYkCUhpRSlGgVTegDaBZHQJRNTiCJ40N1fZQoaAZoCWgPQwi37XvU3wliQJSGlFKUaBVN6ANoFkdAlE3XgpBomHV9lChoBmgJaA9DCNUhN8MNuGdAlIaUUpRoFU3oA2gWR0CUTq2fkFOgdX2UKGgGaAloD0MIiBItebzyYUCUhpRSlGgVTegDaBZHQJRO8v6CUX51fZQoaAZoCWgPQwiPUglP6HtiQJSGlFKUaBVN6ANoFkdAlFO9Mbm2cHV9lChoBmgJaA9DCHo01ZP5WmZAlIaUUpRoFU3oA2gWR0CUU/ZqEeySdX2UKGgGaAloD0MI+SzPgzuZZUCUhpRSlGgVTegDaBZHQJRXLUTcqON1fZQoaAZoCWgPQwj3P8Batb1lQJSGlFKUaBVN6ANoFkdAlFtqUVzp5nV9lChoBmgJaA9DCJrOTgZHaWdAlIaUUpRoFU3oA2gWR0CUdWxy4nWrdX2UKGgGaAloD0MIlzeHa7X0YkCUhpRSlGgVTegDaBZHQJR8BZjhDPZ1fZQoaAZoCWgPQwiGN2vwPgVkQJSGlFKUaBVN6ANoFkdAlIpABLf1pXV9lChoBmgJaA9DCE3zjlP0aWNAlIaUUpRoFU3oA2gWR0CUk2DXe3x4dX2UKGgGaAloD0MIZVBtcKIqZECUhpRSlGgVTegDaBZHQJSTl7HAAQx1fZQoaAZoCWgPQwg5s12hj9lkQJSGlFKUaBVN6ANoFkdAlJrljAi3X3V9lChoBmgJaA9DCJxtbkxPZ2JAlIaUUpRoFU3oA2gWR0CUnLCJGe+VdX2UKGgGaAloD0MIsTOFzmueYECUhpRSlGgVTegDaBZHQJSfbRhMJyB1fZQoaAZoCWgPQwgDzlKynMdjQJSGlFKUaBVN6ANoFkdAlJ/45DJEIHV9lChoBmgJaA9DCG+9pgcFQGdAlIaUUpRoFU3oA2gWR0CUoFo6jnFHdX2UKGgGaAloD0MIUYNpGL4vYkCUhpRSlGgVTegDaBZHQJSg/q2SdOJ1fZQoaAZoCWgPQwiN0M/U60hhQJSGlFKUaBVN6ANoFkdAlKExSHdoFnV9lChoBmgJaA9DCA2nzM03L2dAlIaUUpRoFU3oA2gWR0CUpT31zySWdX2UKGgGaAloD0MIkIgpkUTEYECUhpRSlGgVTegDaBZHQJSlfKgZjx11fZQoaAZoCWgPQwis/3OYL7tdQJSGlFKUaBVN6ANoFkdAlKjOiWVu8HV9lChoBmgJaA9DCFqhSPfzH2JAlIaUUpRoFU3oA2gWR0CUrN1rIo3KdX2UKGgGaAloD0MIKH0h5Lw/YkCUhpRSlGgVTegDaBZHQJTLSpgkTpR1fZQoaAZoCWgPQwhhinJp/N9lQJSGlFKUaBVN6ANoFkdAlND6ebutwXV9lChoBmgJaA9DCIXP1sFBcGVAlIaUUpRoFU3oA2gWR0CU2sF2FFlTdX2UKGgGaAloD0MIQWFQptHjW0CUhpRSlGgVTegDaBZHQJTiXzkIX0p1fZQoaAZoCWgPQwixwFd0a+diQJSGlFKUaBVN6ANoFkdAlOKLkCFK03V9lChoBmgJaA9DCHgq4J7nyWBAlIaUUpRoFU3oA2gWR0CU6LFd9lVcdX2UKGgGaAloD0MIkdCWcylbYUCUhpRSlGgVTegDaBZHQJTqJLytmth1fZQoaAZoCWgPQwjICKhwBE9dQJSGlFKUaBVN6ANoFkdAlOyGKZUkwHV9lChoBmgJaA9DCK5mnfH9ZmdAlIaUUpRoFU3oA2gWR0CU7QZdfLLZdX2UKGgGaAloD0MIs0C7QwqhZECUhpRSlGgVTegDaBZHQJTtgxM36yl1fZQoaAZoCWgPQwh6VWe1wDdoQJSGlFKUaBVN6ANoFkdAlO4/H93r2XV9lChoBmgJaA9DCKJfWz/9IV9AlIaUUpRoFU3oA2gWR0CU7n9ZzPrwdX2UKGgGaAloD0MIMh8Q6Ex7YECUhpRSlGgVTegDaBZHQJTzMpBomHB1fZQoaAZoCWgPQwjNAu0OKX1gQJSGlFKUaBVN6ANoFkdAlPN2j4593XV9lChoBmgJaA9DCKZHUz0Z/2NAlIaUUpRoFU3oA2gWR0CU95VeruIAdX2UKGgGaAloD0MIxJPdzGh0Y0CUhpRSlGgVTegDaBZHQJT9FZowmE51fZQoaAZoCWgPQwiNCpxsg3RrQJSGlFKUaBVNlQFoFkdAlRTALeANG3V9lChoBmgJaA9DCO9v0F79tmJAlIaUUpRoFU3oA2gWR0CVFkVGTcIrdX2UKGgGaAloD0MItOOG302faECUhpRSlGgVTegDaBZHQJUbBn003wV1fZQoaAZoCWgPQwhhF0UPfMhCQJSGlFKUaBVL8GgWR0CVIsmnO0LMdX2UKGgGaAloD0MIw/ARMSUaaECUhpRSlGgVTegDaBZHQJUjJ5ooNNJ1fZQoaAZoCWgPQwjsGFdcnF9hQJSGlFKUaBVN6ANoFkdAlSppu/Dcd3V9lChoBmgJaA9DCJl/9E0aK2JAlIaUUpRoFU3oA2gWR0CVKp+CbtqpdX2UKGgGaAloD0MI5PT1fE2KYkCUhpRSlGgVTegDaBZHQJUyPNJOFg51fZQoaAZoCWgPQwhO7QxT2y1gQJSGlFKUaBVN6ANoFkdAlTRURODaoXV9lChoBmgJaA9DCFtfJLTl0F1AlIaUUpRoFU3oA2gWR0CVODv/zasZdX2UKGgGaAloD0MIcjYdAVydY0CUhpRSlGgVTegDaBZHQJU4taouPFN1fZQoaAZoCWgPQwg0EMtmjkpgQJSGlFKUaBVN6ANoFkdAlTl+7cwg1XV9lChoBmgJaA9DCCh9IeS8BGZAlIaUUpRoFU3oA2gWR0CVOb5Jbt7bdX2UKGgGaAloD0MIy4CzlCw2XkCUhpRSlGgVTegDaBZHQJU9k/u9eyB1fZQoaAZoCWgPQwjXprG9llxmQJSGlFKUaBVN6ANoFkdAlT3LWRRuTHV9lChoBmgJaA9DCIvAWN9AsmNAlIaUUpRoFU3oA2gWR0CVQQA31jAjdX2UKGgGaAloD0MI+YIWEjC/ZECUhpRSlGgVTegDaBZHQJVFMjUutfZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9748d58e98ce9681cc3dda01956c5f8168af15e32859cbcdef67ce804a11d5c
|
3 |
+
size 147396
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ee78184c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ee7818550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ee78185e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ee7818670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3ee7818700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3ee7818790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ee7818820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ee78188b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3ee7818940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ee78189d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ee7818a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ee7818af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3ee780be40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682754427459772955,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACC2Kb44fJ67+t62OWIJBjfUQOI8/eXXuAAAgD8AAIA/moeLvSmEPrqJDsq5oCqKtqpfmbtokO84AACAPwAAgD/T6nU+E0yBP+WmbzrWi6O+gtC8PaqnHj0AAAAAAAAAAM1w2TzDBU664gWCu+ogA7eIBgO7GqGXOgAAgD8AAIA/5iVQvbr5CD5YVNw814+AvhVuDrwRToQ9AAAAAAAAAAAz5ty89od9PfqHgL2xUT++FlzLvT8XIbwAAAAAAAAAAM0bxbwUcoO61tUvOAC1VrJF+jG7oqlItwAAgD8AAIA/zkgIv0fLUr7by+w8Wi43OkttWj47YEY8AAAAAAAAAADA++e97KGouYV8XTqvwsW2SeHtuw/ngrkAAIA/AACAP2asAr5cfQ87/cpRu98+MDg0L5y8e5eHOgAAgD8AAIA/GrYXvpQeizuOfoK1kw8WMzcDM70YyM40AACAPwAAgD+acak89khXumgrnLvVUjI3KpMbuwr/n7YAAIA/AACAP5NNDr49ij44fqRrOq/IF7iZjxS85ieHuQAAgD8AAIA/89yRvQrXPjhZZpk4Jl4kM3d5GDu7Ora3AACAPwAAgD/mxys9OOzqPU75+73Z15e+LOSTvTN0izoAAAAAAAAAACZks717fpS6gjkjOVPxNDXLho+6CwpMuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr13acNgZZ0CUhpRSlIwBbJRN6AOMAXSUR0CTVGRu0kWzdX2UKGgGaAloD0MIkUdwI2XLYkCUhpRSlGgVTegDaBZHQJNX8V8CxNZ1fZQoaAZoCWgPQwhtVKcD2fZgQJSGlFKUaBVN6ANoFkdAk3GblA/s3XV9lChoBmgJaA9DCN1B7EyhbGJAlIaUUpRoFU3oA2gWR0CTet0VJtiydX2UKGgGaAloD0MIgEkqU0w9YkCUhpRSlGgVTegDaBZHQJOAmAWi1zB1fZQoaAZoCWgPQwgnbD8Z43JnQJSGlFKUaBVN6ANoFkdAk4qd1EE1VHV9lChoBmgJaA9DCI3ttaD3ImdAlIaUUpRoFU3oA2gWR0CTk8e3QUpNdX2UKGgGaAloD0MI/te5aTP2Y0CUhpRSlGgVTegDaBZHQJOUChAWznl1fZQoaAZoCWgPQwi/SGjLOU1kQJSGlFKUaBVN6ANoFkdAk52klRgqmXV9lChoBmgJaA9DCMWrrG0KLmVAlIaUUpRoFU3oA2gWR0CToEFuejEfdX2UKGgGaAloD0MIZvfkYSFCZECUhpRSlGgVTegDaBZHQJOj9vUBnzx1fZQoaAZoCWgPQwgQW3o0Vb5oQJSGlFKUaBVN6ANoFkdAk6SIeYD1XnV9lChoBmgJaA9DCKX3ja89GWZAlIaUUpRoFU3oA2gWR0CTpOuL74zrdX2UKGgGaAloD0MIC9XNxV/oZUCUhpRSlGgVTegDaBZHQJOljWTX8O11fZQoaAZoCWgPQwiZgcr4925hQJSGlFKUaBVN6ANoFkdAk6XE6tDD0nV9lChoBmgJaA9DCGO5pdWQJ2hAlIaUUpRoFU3oA2gWR0CTqdFuvUz9dX2UKGgGaAloD0MI97AXCth7ZUCUhpRSlGgVTegDaBZHQJOqCVNYbKl1fZQoaAZoCWgPQwilaOVeYMpnQJSGlFKUaBVN6ANoFkdAk60lpPAO8XV9lChoBmgJaA9DCJCF6BA4wWFAlIaUUpRoFU3oA2gWR0CTwbnWattAdX2UKGgGaAloD0MIJuMYyR4JYkCUhpRSlGgVTegDaBZHQJPK5ORDCxh1fZQoaAZoCWgPQwg0MPKypkplQJSGlFKUaBVN6ANoFkdAk9K5NXYDknV9lChoBmgJaA9DCEfp0r+kTGNAlIaUUpRoFU3oA2gWR0CT4EqZ+hGpdX2UKGgGaAloD0MIsOYAwZx2YUCUhpRSlGgVTegDaBZHQJPo4xoIv8J1fZQoaAZoCWgPQwjylNV0PYliQJSGlFKUaBVN6ANoFkdAk+ke8f3evnV9lChoBmgJaA9DCIkkehnFr2NAlIaUUpRoFU3oA2gWR0CT8Jcv/R3NdX2UKGgGaAloD0MIYYvdPitlZECUhpRSlGgVTegDaBZHQJPybAqNIbx1fZQoaAZoCWgPQwiHakqyjsBmQJSGlFKUaBVN6ANoFkdAk/ViYCyQgnV9lChoBmgJaA9DCH9skh9xtGNAlIaUUpRoFU3oA2gWR0CT9fEFW4mUdX2UKGgGaAloD0MIOGbZk0BLZkCUhpRSlGgVTegDaBZHQJP2UOBlMAZ1fZQoaAZoCWgPQwju6H+5FmdmQJSGlFKUaBVN6ANoFkdAk/bt2X9it3V9lChoBmgJaA9DCH1Z2qk5zGFAlIaUUpRoFU3oA2gWR0CT9yNahYeUdX2UKGgGaAloD0MIPfGcLSDxYUCUhpRSlGgVTegDaBZHQJP7MYht+Ct1fZQoaAZoCWgPQwjlXmBWqF9gQJSGlFKUaBVN6ANoFkdAk/tqD5CWvHV9lChoBmgJaA9DCBGmKJfGjl9AlIaUUpRoFU3oA2gWR0CT/swHJLdvdX2UKGgGaAloD0MInPhqR/FOaECUhpRSlGgVTegDaBZHQJQDZsqJ/G51fZQoaAZoCWgPQwhgrkUL0HReQJSGlFKUaBVN6ANoFkdAlCMMWbgCOnV9lChoBmgJaA9DCH7iAPp9YV1AlIaUUpRoFU3oA2gWR0CUKUS88La3dX2UKGgGaAloD0MIFHtoH6vKYECUhpRSlGgVTegDaBZHQJQz5xWDHwR1fZQoaAZoCWgPQwjGavP/KsVmQJSGlFKUaBVN6ANoFkdAlDyK+BYms3V9lChoBmgJaA9DCMTSwI/qIGRAlIaUUpRoFU3oA2gWR0CUPMDtw71adX2UKGgGaAloD0MITHDqA8nsYkCUhpRSlGgVTegDaBZHQJRGGECeVcF1fZQoaAZoCWgPQwisAUpDDU5kQJSGlFKUaBVN6ANoFkdAlEieaa1CxHV9lChoBmgJaA9DCJMa2gDsD2VAlIaUUpRoFU3oA2gWR0CUTIboKUmldX2UKGgGaAloD0MIEaYol0YdYkCUhpRSlGgVTegDaBZHQJRNTiCJ40N1fZQoaAZoCWgPQwi37XvU3wliQJSGlFKUaBVN6ANoFkdAlE3XgpBomHV9lChoBmgJaA9DCNUhN8MNuGdAlIaUUpRoFU3oA2gWR0CUTq2fkFOgdX2UKGgGaAloD0MIiBItebzyYUCUhpRSlGgVTegDaBZHQJRO8v6CUX51fZQoaAZoCWgPQwiPUglP6HtiQJSGlFKUaBVN6ANoFkdAlFO9Mbm2cHV9lChoBmgJaA9DCHo01ZP5WmZAlIaUUpRoFU3oA2gWR0CUU/ZqEeySdX2UKGgGaAloD0MI+SzPgzuZZUCUhpRSlGgVTegDaBZHQJRXLUTcqON1fZQoaAZoCWgPQwj3P8Batb1lQJSGlFKUaBVN6ANoFkdAlFtqUVzp5nV9lChoBmgJaA9DCJrOTgZHaWdAlIaUUpRoFU3oA2gWR0CUdWxy4nWrdX2UKGgGaAloD0MIlzeHa7X0YkCUhpRSlGgVTegDaBZHQJR8BZjhDPZ1fZQoaAZoCWgPQwiGN2vwPgVkQJSGlFKUaBVN6ANoFkdAlIpABLf1pXV9lChoBmgJaA9DCE3zjlP0aWNAlIaUUpRoFU3oA2gWR0CUk2DXe3x4dX2UKGgGaAloD0MIZVBtcKIqZECUhpRSlGgVTegDaBZHQJSTl7HAAQx1fZQoaAZoCWgPQwg5s12hj9lkQJSGlFKUaBVN6ANoFkdAlJrljAi3X3V9lChoBmgJaA9DCJxtbkxPZ2JAlIaUUpRoFU3oA2gWR0CUnLCJGe+VdX2UKGgGaAloD0MIsTOFzmueYECUhpRSlGgVTegDaBZHQJSfbRhMJyB1fZQoaAZoCWgPQwgDzlKynMdjQJSGlFKUaBVN6ANoFkdAlJ/45DJEIHV9lChoBmgJaA9DCG+9pgcFQGdAlIaUUpRoFU3oA2gWR0CUoFo6jnFHdX2UKGgGaAloD0MIUYNpGL4vYkCUhpRSlGgVTegDaBZHQJSg/q2SdOJ1fZQoaAZoCWgPQwiN0M/U60hhQJSGlFKUaBVN6ANoFkdAlKExSHdoFnV9lChoBmgJaA9DCA2nzM03L2dAlIaUUpRoFU3oA2gWR0CUpT31zySWdX2UKGgGaAloD0MIkIgpkUTEYECUhpRSlGgVTegDaBZHQJSlfKgZjx11fZQoaAZoCWgPQwis/3OYL7tdQJSGlFKUaBVN6ANoFkdAlKjOiWVu8HV9lChoBmgJaA9DCFqhSPfzH2JAlIaUUpRoFU3oA2gWR0CUrN1rIo3KdX2UKGgGaAloD0MIKH0h5Lw/YkCUhpRSlGgVTegDaBZHQJTLSpgkTpR1fZQoaAZoCWgPQwhhinJp/N9lQJSGlFKUaBVN6ANoFkdAlND6ebutwXV9lChoBmgJaA9DCIXP1sFBcGVAlIaUUpRoFU3oA2gWR0CU2sF2FFlTdX2UKGgGaAloD0MIQWFQptHjW0CUhpRSlGgVTegDaBZHQJTiXzkIX0p1fZQoaAZoCWgPQwixwFd0a+diQJSGlFKUaBVN6ANoFkdAlOKLkCFK03V9lChoBmgJaA9DCHgq4J7nyWBAlIaUUpRoFU3oA2gWR0CU6LFd9lVcdX2UKGgGaAloD0MIkdCWcylbYUCUhpRSlGgVTegDaBZHQJTqJLytmth1fZQoaAZoCWgPQwjICKhwBE9dQJSGlFKUaBVN6ANoFkdAlOyGKZUkwHV9lChoBmgJaA9DCK5mnfH9ZmdAlIaUUpRoFU3oA2gWR0CU7QZdfLLZdX2UKGgGaAloD0MIs0C7QwqhZECUhpRSlGgVTegDaBZHQJTtgxM36yl1fZQoaAZoCWgPQwh6VWe1wDdoQJSGlFKUaBVN6ANoFkdAlO4/H93r2XV9lChoBmgJaA9DCKJfWz/9IV9AlIaUUpRoFU3oA2gWR0CU7n9ZzPrwdX2UKGgGaAloD0MIMh8Q6Ex7YECUhpRSlGgVTegDaBZHQJTzMpBomHB1fZQoaAZoCWgPQwjNAu0OKX1gQJSGlFKUaBVN6ANoFkdAlPN2j4593XV9lChoBmgJaA9DCKZHUz0Z/2NAlIaUUpRoFU3oA2gWR0CU95VeruIAdX2UKGgGaAloD0MIxJPdzGh0Y0CUhpRSlGgVTegDaBZHQJT9FZowmE51fZQoaAZoCWgPQwiNCpxsg3RrQJSGlFKUaBVNlQFoFkdAlRTALeANG3V9lChoBmgJaA9DCO9v0F79tmJAlIaUUpRoFU3oA2gWR0CVFkVGTcIrdX2UKGgGaAloD0MItOOG302faECUhpRSlGgVTegDaBZHQJUbBn003wV1fZQoaAZoCWgPQwhhF0UPfMhCQJSGlFKUaBVL8GgWR0CVIsmnO0LMdX2UKGgGaAloD0MIw/ARMSUaaECUhpRSlGgVTegDaBZHQJUjJ5ooNNJ1fZQoaAZoCWgPQwjsGFdcnF9hQJSGlFKUaBVN6ANoFkdAlSppu/Dcd3V9lChoBmgJaA9DCJl/9E0aK2JAlIaUUpRoFU3oA2gWR0CVKp+CbtqpdX2UKGgGaAloD0MI5PT1fE2KYkCUhpRSlGgVTegDaBZHQJUyPNJOFg51fZQoaAZoCWgPQwhO7QxT2y1gQJSGlFKUaBVN6ANoFkdAlTRURODaoXV9lChoBmgJaA9DCFtfJLTl0F1AlIaUUpRoFU3oA2gWR0CVODv/zasZdX2UKGgGaAloD0MIcjYdAVydY0CUhpRSlGgVTegDaBZHQJU4taouPFN1fZQoaAZoCWgPQwg0EMtmjkpgQJSGlFKUaBVN6ANoFkdAlTl+7cwg1XV9lChoBmgJaA9DCCh9IeS8BGZAlIaUUpRoFU3oA2gWR0CVOb5Jbt7bdX2UKGgGaAloD0MIy4CzlCw2XkCUhpRSlGgVTegDaBZHQJU9k/u9eyB1fZQoaAZoCWgPQwjXprG9llxmQJSGlFKUaBVN6ANoFkdAlT3LWRRuTHV9lChoBmgJaA9DCIvAWN9AsmNAlIaUUpRoFU3oA2gWR0CVQQA31jAjdX2UKGgGaAloD0MI+YIWEjC/ZECUhpRSlGgVTegDaBZHQJVFMjUutfZ1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:672c3b920e164268aa170d3e3da6f5da2ac55ef2967d6e4265abb64366b7f5d0
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2c312eeec54b5afa5c0ddd6dc3dd3c088efa357a05d79d4b622e2e3ccb1bb00
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (212 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.4395786349853, "std_reward": 17.71065606495754, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T08:12:58.678552"}
|