File size: 4,543 Bytes
b14e0b6
 
 
 
 
 
c8e3f8d
b14e0b6
 
 
 
 
 
d589a60
b14e0b6
c99c005
 
b14e0b6
 
 
 
 
 
c99c005
 
 
 
 
 
 
 
 
 
 
 
 
6bfaa2c
 
 
 
 
309c461
6bfaa2c
c99c005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14e0b6
 
d9ea097
b14e0b6
be73230
1f76e35
b14e0b6
67c0211
1f76e35
67c0211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14e0b6
 
 
 
 
 
98ec9ac
b14e0b6
 
 
 
 
98ec9ac
b14e0b6
65e7095
 
 
 
 
d9ea097
852f357
65e7095
 
 
 
8926743
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
language:
- pt
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- pt
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R Wav2Vec2 Portuguese by Jonatas Grosman
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 8.7
    - name: Test CER
      type: cer
      value: 2.55
    - name: Test WER (+LM)
      type: wer
      value: 6.04
    - name: Test CER (+LM)
      type: cer
      value: 1.98
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: pt
    metrics:
    - name: Dev WER
      type: wer
      value: 24.23
    - name: Dev CER
      type: cer
      value: 11.3
    - name: Dev WER (+LM)
      type: wer
      value: 19.41
    - name: Dev CER (+LM)
      type: cer
      value: 10.19
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: pt
    metrics:
    - name: Test WER
      type: wer
      value: 18.8
---

# Fine-tuned XLS-R 1B model for speech recognition in Portuguese

Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co./facebook/wav2vec2-xls-r-1b) on Portuguese using the train and validation splits of [Common Voice 8.0](https://huggingface.co./datasets/mozilla-foundation/common_voice_8_0), [CORAA](https://github.com/nilc-nlp/CORAA), [Multilingual TEDx](http://www.openslr.org/100), and [Multilingual LibriSpeech](https://www.openslr.org/94/).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

## Usage

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
```

## Evaluation Commands

1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr-1b-portuguese,
  title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co./jonatasgrosman/wav2vec2-xls-r-1b-portuguese}},
  year={2022}
}
```