File size: 5,241 Bytes
7b82f32 9d23c4b 7b82f32 9d23c4b 7b82f32 1c015c0 7b82f32 1c015c0 7b82f32 1c015c0 9d23c4b 1c015c0 7b82f32 7102b7d 7b82f32 9ba8b29 7b82f32 96db374 7b82f32 3e66b8a 766a202 3e66b8a 766a202 3e66b8a 766a202 3e66b8a 766a202 3e66b8a 7b82f32 2c17858 7b82f32 9d23c4b 7b82f32 9d23c4b 7b82f32 9d23c4b b7d99e6 9d23c4b efe7059 7102b7d efe7059 6b1cea3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
language: pl
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- mozilla-foundation/common_voice_6_0
- pl
- robust-speech-event
- speech
- xlsr-fine-tuning-week
model-index:
- name: XLSR Wav2Vec2 Polish by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice pl
type: common_voice
args: pl
metrics:
- name: Test WER
type: wer
value: 14.21
- name: Test CER
type: cer
value: 3.49
- name: Test WER (+LM)
type: wer
value: 10.98
- name: Test CER (+LM)
type: cer
value: 2.93
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: pl
metrics:
- name: Dev WER
type: wer
value: 33.18
- name: Dev CER
type: cer
value: 15.92
- name: Dev WER (+LM)
type: wer
value: 29.31
- name: Dev CER (+LM)
type: cer
value: 15.17
---
# Fine-tuned XLSR-53 large model for speech recognition in Polish
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on Polish using the train and validation splits of [Common Voice 6.1](https://huggingface.co./datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-polish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pl"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-polish"
SAMPLES = 5
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| """CZY DRZWI BYŁY ZAMKNIĘTE?""" | PRZY DRZWI BYŁY ZAMKNIĘTE |
| GDZIEŻ TU POWÓD DO WYRZUTÓW? | WGDZIEŻ TO POM DO WYRYDÓ |
| """O TEM JEDNAK NIE BYŁO MOWY.""" | O TEM JEDNAK NIE BYŁO MOWY |
| LUBIĘ GO. | LUBIĄ GO |
| — TO MI NIE POMAGA. | TO MNIE NIE POMAGA |
| WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM, Z MIASTA, Z PRAGI. | WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM Z MIASTA Z PRAGI |
| ALE ON WCALE INACZEJ NIE MYŚLAŁ. | ONY MONITCENIE PONACZUŁA NA MASU |
| A WY, CO TAK STOICIE? | A WY CO TAK STOICIE |
| A TEN PRZYRZĄD DO CZEGO SŁUŻY? | A TEN PRZYRZĄD DO CZEGO SŁUŻY |
| NA JUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU. | NAJUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021xlsr53-large-polish,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}olish},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-polish}},
year={2021}
}
``` |