File size: 7,722 Bytes
e8b5096
406ffc0
e8b5096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5f05a
e8b5096
 
cb5f05a
e8b5096
 
d2af85f
e8b5096
5891ca7
e8b5096
 
5466601
 
e8b5096
 
 
 
9c9f6c0
 
e6151e8
9c9f6c0
 
e6151e8
9c9f6c0
e6151e8
9c9f6c0
e6151e8
 
9c9f6c0
 
 
e8b5096
 
 
 
 
 
 
 
 
cb5f05a
e8b5096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5f05a
 
e8b5096
cb5f05a
 
 
 
 
 
 
e8b5096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5f05a
 
 
 
 
e8b5096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8955265
e8b5096
8955265
 
e8b5096
8955265
 
 
e8b5096
 
 
39fa8e4
 
 
 
 
e8b5096
 
 
 
cb5f05a
39fa8e4
 
 
cb5f05a
 
542632a
 
 
 
 
 
c81a7c4
d78eb4c
542632a
 
 
 
99ccb27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
language: zh
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Chinese (zh-CN) by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice zh-CN
      type: common_voice
      args: zh-CN
    metrics:
       - name: Test WER
         type: wer
         value: 82.37
       - name: Test CER
         type: cer
         value: 19.03
---

# Fine-tuned XLSR-53 large model for speech recognition in Chinese

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co./datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "zh-CN"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| 宋朝末年年间定居粉岭围。 | 宋朝末年年间定居分定为 |
| 渐渐行动不便 | 建境行动不片 |
| 二十一年去世。 | 二十一年去世 |
| 他们自称恰哈拉。 | 他们自称家哈<unk> |
| 局部干涩的例子包括有口干、眼睛干燥、及阴道干燥。 | 菊物干寺的例子包括有口肝眼睛干照以及阴到干<unk> |
| 嘉靖三十八年,登进士第三甲第二名。 | 嘉靖三十八年登进士第三甲第二名 |
| 这一名称一直沿用至今。 | 这一名称一直沿用是心 |
| 同时乔凡尼还得到包税合同和许多明矾矿的经营权。 | 同时桥凡妮还得到包税合同和许多民繁矿的经营权 |
| 为了惩罚西扎城和塞尔柱的结盟,盟军在抵达后将外城烧毁。 | 为了曾罚西扎城和塞尔素的节盟盟军在抵达后将外曾烧毁 |
| 河内盛产黄色无鱼鳞的鳍射鱼。 | 合类生场环色无鱼林的骑射鱼 |

## Evaluation

The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice.

```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "zh-CN"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                  "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                  "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                  "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                  "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```

**Test Result**:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-13). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** |
| ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% |


## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021xlsr53-large-chinese,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}},
  year={2021}
}
```