--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - scirepeval model-index: - name: bert-base-uncased-MLP-scirepeval-chemistry-LARGE results: [] --- # bert-base-uncased-MLP-scirepeval-chemistry-LARGE This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the scirepeval dataset. It achieves the following results on the evaluation set: - Loss: 1.7126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2387 | 1.0 | 1407 | 1.9832 | | 2.0503 | 2.0 | 2814 | 1.8959 | | 1.9684 | 3.0 | 4221 | 1.8506 | | 1.9195 | 4.0 | 5628 | 1.8186 | | 1.8864 | 5.0 | 7035 | 1.8010 | | 1.8551 | 6.0 | 8442 | 1.7677 | | 1.8311 | 7.0 | 9849 | 1.7436 | | 1.8185 | 8.0 | 11256 | 1.7415 | | 1.8013 | 9.0 | 12663 | 1.7315 | | 1.796 | 10.0 | 14070 | 1.7378 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3