--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - clothes-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-clothes-classification results: [] --- # vit-clothes-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the DBQ/Matches.Fashion.Product.prices.France dataset. It achieves the following results on the evaluation set: - Loss: 1.2328 - Accuracy: 0.6395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.0975 | 0.5714 | 500 | 1.2619 | 0.6111 | | 0.8315 | 1.1429 | 1000 | 1.3133 | 0.6322 | | 0.7266 | 1.7143 | 1500 | 1.2077 | 0.6356 | | 0.5451 | 2.2857 | 2000 | 1.2895 | 0.6556 | | 0.4287 | 2.8571 | 2500 | 1.2736 | 0.6644 | | 0.2554 | 3.4286 | 3000 | 1.3801 | 0.6767 | | 0.2265 | 4.0 | 3500 | 1.4924 | 0.6656 | | 0.0738 | 4.5714 | 4000 | 1.6321 | 0.68 | | 0.0761 | 5.1429 | 4500 | 1.6676 | 0.6767 | | 0.0251 | 5.7143 | 5000 | 1.6911 | 0.7056 | | 0.0147 | 6.2857 | 5500 | 1.7312 | 0.7 | | 0.0051 | 6.8571 | 6000 | 1.7282 | 0.6922 | | 0.0028 | 7.4286 | 6500 | 1.7679 | 0.6967 | | 0.0017 | 8.0 | 7000 | 1.7642 | 0.6989 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1