--- license: apache-2.0 base_model: bert-base-uncased tags: - classification - generated_from_trainer datasets: - poem_sentiment metrics: - accuracy model-index: - name: clasificador-poem-sentiment results: - task: name: Text Classification type: text-classification dataset: name: poem_sentiment type: poem_sentiment config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8461538461538461 --- # clasificador-poem-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the poem_sentiment dataset. It achieves the following results on the evaluation set: - Loss: 0.5423 - Accuracy: 0.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 112 | 0.4428 | 0.8558 | | No log | 2.0 | 224 | 0.4875 | 0.8462 | | No log | 3.0 | 336 | 0.5423 | 0.8462 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0