--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - told-br metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-told-br results: - task: name: Text Classification type: text-classification dataset: name: told-br type: told-br config: binary split: validation args: binary metrics: - name: Accuracy type: accuracy value: 0.7457142857142857 - name: F1 type: f1 value: 0.7452494655157376 --- # xlm-roberta-base-finetuned-told-br This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the told-br dataset. It achieves the following results on the evaluation set: - Loss: 0.4925 - Accuracy: 0.7457 - F1: 0.7452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5935 | 1.0 | 263 | 0.4970 | 0.7338 | 0.7350 | | 0.4797 | 2.0 | 526 | 0.4925 | 0.7457 | 0.7452 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1