Files: Epoch -1
Browse files- .DS_Store +0 -0
- __pycache__/config.cpython-310.pyc +0 -0
- config.py +22 -0
- ddpm-paintings-128-finetuned-cifar10/logs/ddpm-paintings-128-finetuned-cifar10/events.out.tfevents.1701696166.coffee.14798.0 +3 -0
- ddpm-paintings-128-finetuned-cifar10/logs/ddpm-paintings-128-finetuned-cifar10/events.out.tfevents.1701704512.coffee.17529.0 +3 -0
- ddpm-paintings-128-finetuned-cifar10/samples/0000.png +0 -0
- ddpm-paintings-128-finetuned-cifar10/samples/0001.png +0 -0
- ddpm-paintings-128-finetuned-cifar10/samples/0002.png +0 -0
- main.py +200 -0
- unet.txt +319 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
__pycache__/config.cpython-310.pyc
ADDED
Binary file (866 Bytes). View file
|
|
config.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
|
4 |
+
@dataclass
|
5 |
+
class TrainingConfig:
|
6 |
+
image_size = 128 # the generated image resolution
|
7 |
+
train_batch_size = 4
|
8 |
+
eval_batch_size = 4 # how many images to sample during evaluation
|
9 |
+
num_epochs = 50
|
10 |
+
gradient_accumulation_steps = 1
|
11 |
+
learning_rate = 1e-4
|
12 |
+
lr_warmup_steps = 500
|
13 |
+
save_image_epochs = 1
|
14 |
+
save_model_epochs = 3
|
15 |
+
mixed_precision = 'fp16' # `no` for float32, `fp16` for automatic mixed precision
|
16 |
+
output_dir = 'ddpm-paintings-128-finetuned-cifar10' # the model name locally and on the HF Hub
|
17 |
+
|
18 |
+
push_to_hub = True # whether to upload the saved model to the HF Hub
|
19 |
+
hub_model_id = 'jmemon/ddpm-paintings-128-finetuned-cifar10' # the name of the repository to create on the HF Hub
|
20 |
+
hub_private_repo = False
|
21 |
+
overwrite_output_dir = True # overwrite the old model when re-running the notebook
|
22 |
+
seed = 0
|
ddpm-paintings-128-finetuned-cifar10/logs/ddpm-paintings-128-finetuned-cifar10/events.out.tfevents.1701696166.coffee.14798.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2fbf486914eb9ed63fdbcf637c2874ca608a32f1ec948a4567e37a8e2e412f3
|
3 |
+
size 427942
|
ddpm-paintings-128-finetuned-cifar10/logs/ddpm-paintings-128-finetuned-cifar10/events.out.tfevents.1701704512.coffee.17529.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c99374f9a97092f9da24ebc79289a21d0e48e40598c677c8206b1f453c2b050
|
3 |
+
size 88
|
ddpm-paintings-128-finetuned-cifar10/samples/0000.png
ADDED
ddpm-paintings-128-finetuned-cifar10/samples/0001.png
ADDED
ddpm-paintings-128-finetuned-cifar10/samples/0002.png
ADDED
main.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import PIL
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from accelerate import Accelerator
|
6 |
+
from datasets import load_dataset
|
7 |
+
from diffusers import DDPMPipeline, UNet2DModel, DDPMScheduler
|
8 |
+
from diffusers.optimization import get_cosine_schedule_with_warmup
|
9 |
+
from diffusers.utils import make_image_grid
|
10 |
+
from huggingface_hub import create_repo, upload_folder
|
11 |
+
from peft import LoraConfig, get_peft_model
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torchvision import transforms
|
15 |
+
|
16 |
+
from config import TrainingConfig
|
17 |
+
|
18 |
+
|
19 |
+
"""
|
20 |
+
Or diffusion for simple images (cifar10 or fashion-mnist or mnist) and explore subtly different
|
21 |
+
x_T's and what the output is.
|
22 |
+
|
23 |
+
Denoise each x_T multiple times to get a better picture of the distribution.
|
24 |
+
Maybe use a set sequence of seeds for every denoising run (torch.Generator(seed=__)).
|
25 |
+
|
26 |
+
Inter-concept space. Conciousness.
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
def evaluate(config, epoch, pipeline):
|
31 |
+
# Sample some images from random noise (this is the backward diffusion process).
|
32 |
+
# The default pipeline output type is `List[PIL.Image]`
|
33 |
+
images = pipeline(
|
34 |
+
batch_size=config.eval_batch_size,
|
35 |
+
generator=torch.manual_seed(config.seed),
|
36 |
+
num_inference_steps=50
|
37 |
+
).images
|
38 |
+
|
39 |
+
# Make a grid out of the images
|
40 |
+
image_grid = make_image_grid(images, rows=2, cols=2)
|
41 |
+
|
42 |
+
# Save the images
|
43 |
+
test_dir = Path(config.output_dir) / 'samples'
|
44 |
+
test_dir.mkdir(exist_ok=True)
|
45 |
+
image_grid.save(test_dir / f'{epoch:04d}.png')
|
46 |
+
|
47 |
+
|
48 |
+
def print_trainable_parameters(model):
|
49 |
+
trainable_params = 0
|
50 |
+
all_param = 0
|
51 |
+
for _, param in model.named_parameters():
|
52 |
+
all_param += param.numel()
|
53 |
+
if param.requires_grad:
|
54 |
+
trainable_params += param.numel()
|
55 |
+
print(
|
56 |
+
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}"
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
|
62 |
+
config = TrainingConfig()
|
63 |
+
config.dataset_name = 'keremberke/painting-style-classification'
|
64 |
+
|
65 |
+
ds_dict = load_dataset(config.dataset_name, name='full')
|
66 |
+
|
67 |
+
preprocess = transforms.Compose([
|
68 |
+
transforms.Resize((config.image_size, config.image_size)),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
71 |
+
])
|
72 |
+
|
73 |
+
def transform(examples):
|
74 |
+
return {
|
75 |
+
'images': [preprocess(img.convert('RGB')) for img in examples['image']]
|
76 |
+
}
|
77 |
+
|
78 |
+
ds_dict.set_transform(transform) # automatically applies preprocessing to samples as we load them
|
79 |
+
|
80 |
+
train_dataloader = torch.utils.data.DataLoader(ds_dict['train'], batch_size=config.train_batch_size, shuffle=True)
|
81 |
+
valid_dataloader = torch.utils.data.DataLoader(ds_dict['validation'], batch_size=config.eval_batch_size, shuffle=False)
|
82 |
+
test_dataloader = torch.utils.data.DataLoader(ds_dict['test'], batch_size=config.eval_batch_size, shuffle=False)
|
83 |
+
|
84 |
+
"""pipe = DDPMPipeline.from_pretrained(
|
85 |
+
'google/ddpm-celebahq-256',
|
86 |
+
#use_safetensors=True
|
87 |
+
).to('mps')
|
88 |
+
pipe.enable_attention_slicing()"""
|
89 |
+
|
90 |
+
unet = UNet2DModel.from_pretrained(
|
91 |
+
'google/ddpm-celebahq-256',
|
92 |
+
safetensors=True
|
93 |
+
).to('mps')
|
94 |
+
|
95 |
+
scheduler = DDPMScheduler.from_pretrained(
|
96 |
+
'google/ddpm-celebahq-256'
|
97 |
+
)
|
98 |
+
|
99 |
+
lora_config = LoraConfig(r=8, lora_alpha=8, target_modules=['to_k','to_v'], lora_dropout=0.1, bias='none')
|
100 |
+
lora_unet = get_peft_model(unet, lora_config)
|
101 |
+
|
102 |
+
print_trainable_parameters(lora_unet)
|
103 |
+
|
104 |
+
optimizer = torch.optim.AdamW(lora_unet.parameters(), lr=config.learning_rate)
|
105 |
+
lr_scheduler = get_cosine_schedule_with_warmup(
|
106 |
+
optimizer=optimizer,
|
107 |
+
num_warmup_steps=config.lr_warmup_steps,
|
108 |
+
num_training_steps=(len(train_dataloader) * config.num_epochs)
|
109 |
+
)
|
110 |
+
|
111 |
+
accelerator = Accelerator(
|
112 |
+
gradient_accumulation_steps=config.gradient_accumulation_steps,
|
113 |
+
mixed_precision=config.mixed_precision,
|
114 |
+
log_with='tensorboard',
|
115 |
+
project_dir=Path(config.output_dir) / 'logs'
|
116 |
+
)
|
117 |
+
|
118 |
+
if accelerator.is_main_process:
|
119 |
+
if config.push_to_hub:
|
120 |
+
repo_id = create_repo(repo_id=config.hub_model_id, exist_ok=True).repo_id
|
121 |
+
|
122 |
+
accelerator.init_trackers('ddpm-paintings-128-finetuned-cifar10')
|
123 |
+
|
124 |
+
|
125 |
+
epoch = -1
|
126 |
+
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(lora_unet), scheduler=scheduler)
|
127 |
+
|
128 |
+
upload_folder(
|
129 |
+
repo_id=repo_id,
|
130 |
+
folder_path=Path(config.output_dir).parent,
|
131 |
+
commit_message=f'Files: Epoch {epoch}',
|
132 |
+
ignore_patterns=['step_*', 'epoch_*'],
|
133 |
+
token='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'
|
134 |
+
)
|
135 |
+
|
136 |
+
pipeline.push_to_hub(
|
137 |
+
repo_id=config.hub_model_id,
|
138 |
+
commit_message=f'Model: Epoch {epoch}',
|
139 |
+
token='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'
|
140 |
+
)
|
141 |
+
|
142 |
+
exit()
|
143 |
+
global_step = 0
|
144 |
+
|
145 |
+
for epoch in range(config.num_epochs):
|
146 |
+
pbar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
|
147 |
+
pbar.set_description(f'Epoch {epoch}')
|
148 |
+
|
149 |
+
for idx, batch in enumerate(train_dataloader):
|
150 |
+
clean_images = batch['images'].to('mps')
|
151 |
+
|
152 |
+
noise = torch.randn(clean_images.shape, device=clean_images.device)
|
153 |
+
bs = clean_images.shape[0]
|
154 |
+
|
155 |
+
ts = torch.randint(0, scheduler.config.num_train_timesteps, (bs,), device=clean_images.device, dtype=torch.int64)
|
156 |
+
|
157 |
+
noisy_images = scheduler.add_noise(clean_images, noise, ts)
|
158 |
+
|
159 |
+
with accelerator.accumulate(unet):
|
160 |
+
noise_pred = lora_unet(noisy_images, ts, return_dict=False)[0]
|
161 |
+
loss = F.mse_loss(noise_pred, noise)
|
162 |
+
accelerator.backward(loss)
|
163 |
+
|
164 |
+
accelerator.clip_grad_norm_(lora_unet.parameters(), 1.0)
|
165 |
+
optimizer.step()
|
166 |
+
lr_scheduler.step()
|
167 |
+
optimizer.zero_grad()
|
168 |
+
|
169 |
+
logs = {'loss': loss.detach().item(), 'lr': lr_scheduler.get_last_lr()[0], 'step': global_step}
|
170 |
+
pbar.update(1)
|
171 |
+
pbar.set_postfix(loss=logs['loss'], step=idx + 1)
|
172 |
+
accelerator.log(logs, step=global_step)
|
173 |
+
global_step += 1
|
174 |
+
|
175 |
+
pbar.close()
|
176 |
+
|
177 |
+
if accelerator.is_main_process:
|
178 |
+
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(lora_unet), scheduler=scheduler)
|
179 |
+
|
180 |
+
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
|
181 |
+
# Save some images for model trained at end of epoch
|
182 |
+
evaluate(config, epoch, pipeline)
|
183 |
+
|
184 |
+
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
|
185 |
+
if config.push_to_hub:
|
186 |
+
upload_folder(
|
187 |
+
repo_id=repo_id,
|
188 |
+
folder_path=Path(config.output_dir).parent,
|
189 |
+
commit_message=f'Files: Epoch {epoch}',
|
190 |
+
ignore_patterns=['step_*', 'epoch_*'],
|
191 |
+
token='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'
|
192 |
+
)
|
193 |
+
|
194 |
+
pipeline.push_to_hub(
|
195 |
+
repo_id=config.hub_model_id,
|
196 |
+
commit_message=f'Model: Epoch {epoch}',
|
197 |
+
token='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'
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
pipeline.save_pretrained(config.output_dir)
|
unet.txt
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
UNet2DModel(
|
2 |
+
(conv_in): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
3 |
+
(time_proj): Timesteps()
|
4 |
+
(time_embedding): TimestepEmbedding(
|
5 |
+
(linear_1): LoRACompatibleLinear(in_features=128, out_features=512, bias=True)
|
6 |
+
(act): SiLU()
|
7 |
+
(linear_2): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
8 |
+
)
|
9 |
+
(down_blocks): ModuleList(
|
10 |
+
(0-1): 2 x DownBlock2D(
|
11 |
+
(resnets): ModuleList(
|
12 |
+
(0-1): 2 x ResnetBlock2D(
|
13 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
14 |
+
(conv1): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
15 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True)
|
16 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
17 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
18 |
+
(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
19 |
+
(nonlinearity): SiLU()
|
20 |
+
)
|
21 |
+
)
|
22 |
+
(downsamplers): ModuleList(
|
23 |
+
(0): Downsample2D(
|
24 |
+
(conv): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(2, 2))
|
25 |
+
)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(2): DownBlock2D(
|
29 |
+
(resnets): ModuleList(
|
30 |
+
(0): ResnetBlock2D(
|
31 |
+
(norm1): GroupNorm(32, 128, eps=1e-06, affine=True)
|
32 |
+
(conv1): LoRACompatibleConv(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
33 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
34 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
35 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
36 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
37 |
+
(nonlinearity): SiLU()
|
38 |
+
(conv_shortcut): LoRACompatibleConv(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
39 |
+
)
|
40 |
+
(1): ResnetBlock2D(
|
41 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
42 |
+
(conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
43 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
44 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
45 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
46 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
47 |
+
(nonlinearity): SiLU()
|
48 |
+
)
|
49 |
+
)
|
50 |
+
(downsamplers): ModuleList(
|
51 |
+
(0): Downsample2D(
|
52 |
+
(conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
53 |
+
)
|
54 |
+
)
|
55 |
+
)
|
56 |
+
(3): DownBlock2D(
|
57 |
+
(resnets): ModuleList(
|
58 |
+
(0-1): 2 x ResnetBlock2D(
|
59 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
60 |
+
(conv1): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
61 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
62 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
63 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
64 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
65 |
+
(nonlinearity): SiLU()
|
66 |
+
)
|
67 |
+
)
|
68 |
+
(downsamplers): ModuleList(
|
69 |
+
(0): Downsample2D(
|
70 |
+
(conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(2, 2))
|
71 |
+
)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(4): AttnDownBlock2D(
|
75 |
+
(attentions): ModuleList(
|
76 |
+
(0-1): 2 x Attention(
|
77 |
+
(group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)
|
78 |
+
(to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
79 |
+
(to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
80 |
+
(to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
81 |
+
(to_out): ModuleList(
|
82 |
+
(0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
83 |
+
(1): Dropout(p=0.0, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
)
|
87 |
+
(resnets): ModuleList(
|
88 |
+
(0): ResnetBlock2D(
|
89 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
90 |
+
(conv1): LoRACompatibleConv(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
91 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
92 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
93 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
94 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
95 |
+
(nonlinearity): SiLU()
|
96 |
+
(conv_shortcut): LoRACompatibleConv(256, 512, kernel_size=(1, 1), stride=(1, 1))
|
97 |
+
)
|
98 |
+
(1): ResnetBlock2D(
|
99 |
+
(norm1): GroupNorm(32, 512, eps=1e-06, affine=True)
|
100 |
+
(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
101 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
102 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
103 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
104 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
105 |
+
(nonlinearity): SiLU()
|
106 |
+
)
|
107 |
+
)
|
108 |
+
(downsamplers): ModuleList(
|
109 |
+
(0): Downsample2D(
|
110 |
+
(conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(2, 2))
|
111 |
+
)
|
112 |
+
)
|
113 |
+
)
|
114 |
+
(5): DownBlock2D(
|
115 |
+
(resnets): ModuleList(
|
116 |
+
(0-1): 2 x ResnetBlock2D(
|
117 |
+
(norm1): GroupNorm(32, 512, eps=1e-06, affine=True)
|
118 |
+
(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
119 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
120 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
121 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
122 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
123 |
+
(nonlinearity): SiLU()
|
124 |
+
)
|
125 |
+
)
|
126 |
+
)
|
127 |
+
)
|
128 |
+
(up_blocks): ModuleList(
|
129 |
+
(0): UpBlock2D(
|
130 |
+
(resnets): ModuleList(
|
131 |
+
(0-2): 3 x ResnetBlock2D(
|
132 |
+
(norm1): GroupNorm(32, 1024, eps=1e-06, affine=True)
|
133 |
+
(conv1): LoRACompatibleConv(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
134 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
135 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
136 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
137 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
138 |
+
(nonlinearity): SiLU()
|
139 |
+
(conv_shortcut): LoRACompatibleConv(1024, 512, kernel_size=(1, 1), stride=(1, 1))
|
140 |
+
)
|
141 |
+
)
|
142 |
+
(upsamplers): ModuleList(
|
143 |
+
(0): Upsample2D(
|
144 |
+
(conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
145 |
+
)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(1): AttnUpBlock2D(
|
149 |
+
(attentions): ModuleList(
|
150 |
+
(0-2): 3 x Attention(
|
151 |
+
(group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)
|
152 |
+
(to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
153 |
+
(to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
154 |
+
(to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
155 |
+
(to_out): ModuleList(
|
156 |
+
(0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
157 |
+
(1): Dropout(p=0.0, inplace=False)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
(resnets): ModuleList(
|
162 |
+
(0-1): 2 x ResnetBlock2D(
|
163 |
+
(norm1): GroupNorm(32, 1024, eps=1e-06, affine=True)
|
164 |
+
(conv1): LoRACompatibleConv(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
165 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
166 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
167 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
168 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
169 |
+
(nonlinearity): SiLU()
|
170 |
+
(conv_shortcut): LoRACompatibleConv(1024, 512, kernel_size=(1, 1), stride=(1, 1))
|
171 |
+
)
|
172 |
+
(2): ResnetBlock2D(
|
173 |
+
(norm1): GroupNorm(32, 768, eps=1e-06, affine=True)
|
174 |
+
(conv1): LoRACompatibleConv(768, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
175 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
176 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
177 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
178 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
179 |
+
(nonlinearity): SiLU()
|
180 |
+
(conv_shortcut): LoRACompatibleConv(768, 512, kernel_size=(1, 1), stride=(1, 1))
|
181 |
+
)
|
182 |
+
)
|
183 |
+
(upsamplers): ModuleList(
|
184 |
+
(0): Upsample2D(
|
185 |
+
(conv): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
186 |
+
)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(2): UpBlock2D(
|
190 |
+
(resnets): ModuleList(
|
191 |
+
(0): ResnetBlock2D(
|
192 |
+
(norm1): GroupNorm(32, 768, eps=1e-06, affine=True)
|
193 |
+
(conv1): LoRACompatibleConv(768, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
194 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
195 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
196 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
197 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
198 |
+
(nonlinearity): SiLU()
|
199 |
+
(conv_shortcut): LoRACompatibleConv(768, 256, kernel_size=(1, 1), stride=(1, 1))
|
200 |
+
)
|
201 |
+
(1-2): 2 x ResnetBlock2D(
|
202 |
+
(norm1): GroupNorm(32, 512, eps=1e-06, affine=True)
|
203 |
+
(conv1): LoRACompatibleConv(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
204 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
205 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
206 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
207 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
208 |
+
(nonlinearity): SiLU()
|
209 |
+
(conv_shortcut): LoRACompatibleConv(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(upsamplers): ModuleList(
|
213 |
+
(0): Upsample2D(
|
214 |
+
(conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
215 |
+
)
|
216 |
+
)
|
217 |
+
)
|
218 |
+
(3): UpBlock2D(
|
219 |
+
(resnets): ModuleList(
|
220 |
+
(0-1): 2 x ResnetBlock2D(
|
221 |
+
(norm1): GroupNorm(32, 512, eps=1e-06, affine=True)
|
222 |
+
(conv1): LoRACompatibleConv(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
223 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
224 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
225 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
226 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
227 |
+
(nonlinearity): SiLU()
|
228 |
+
(conv_shortcut): LoRACompatibleConv(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
229 |
+
)
|
230 |
+
(2): ResnetBlock2D(
|
231 |
+
(norm1): GroupNorm(32, 384, eps=1e-06, affine=True)
|
232 |
+
(conv1): LoRACompatibleConv(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
233 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=256, bias=True)
|
234 |
+
(norm2): GroupNorm(32, 256, eps=1e-06, affine=True)
|
235 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
236 |
+
(conv2): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
237 |
+
(nonlinearity): SiLU()
|
238 |
+
(conv_shortcut): LoRACompatibleConv(384, 256, kernel_size=(1, 1), stride=(1, 1))
|
239 |
+
)
|
240 |
+
)
|
241 |
+
(upsamplers): ModuleList(
|
242 |
+
(0): Upsample2D(
|
243 |
+
(conv): LoRACompatibleConv(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
244 |
+
)
|
245 |
+
)
|
246 |
+
)
|
247 |
+
(4): UpBlock2D(
|
248 |
+
(resnets): ModuleList(
|
249 |
+
(0): ResnetBlock2D(
|
250 |
+
(norm1): GroupNorm(32, 384, eps=1e-06, affine=True)
|
251 |
+
(conv1): LoRACompatibleConv(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
252 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True)
|
253 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
254 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
255 |
+
(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
256 |
+
(nonlinearity): SiLU()
|
257 |
+
(conv_shortcut): LoRACompatibleConv(384, 128, kernel_size=(1, 1), stride=(1, 1))
|
258 |
+
)
|
259 |
+
(1-2): 2 x ResnetBlock2D(
|
260 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
261 |
+
(conv1): LoRACompatibleConv(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
262 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True)
|
263 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
264 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
265 |
+
(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
266 |
+
(nonlinearity): SiLU()
|
267 |
+
(conv_shortcut): LoRACompatibleConv(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
268 |
+
)
|
269 |
+
)
|
270 |
+
(upsamplers): ModuleList(
|
271 |
+
(0): Upsample2D(
|
272 |
+
(conv): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
273 |
+
)
|
274 |
+
)
|
275 |
+
)
|
276 |
+
(5): UpBlock2D(
|
277 |
+
(resnets): ModuleList(
|
278 |
+
(0-2): 3 x ResnetBlock2D(
|
279 |
+
(norm1): GroupNorm(32, 256, eps=1e-06, affine=True)
|
280 |
+
(conv1): LoRACompatibleConv(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
281 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=128, bias=True)
|
282 |
+
(norm2): GroupNorm(32, 128, eps=1e-06, affine=True)
|
283 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
284 |
+
(conv2): LoRACompatibleConv(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
285 |
+
(nonlinearity): SiLU()
|
286 |
+
(conv_shortcut): LoRACompatibleConv(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
287 |
+
)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
)
|
291 |
+
(mid_block): UNetMidBlock2D(
|
292 |
+
(attentions): ModuleList(
|
293 |
+
(0): Attention(
|
294 |
+
(group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)
|
295 |
+
(to_q): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
296 |
+
(to_k): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
297 |
+
(to_v): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
298 |
+
(to_out): ModuleList(
|
299 |
+
(0): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
300 |
+
(1): Dropout(p=0.0, inplace=False)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(resnets): ModuleList(
|
305 |
+
(0-1): 2 x ResnetBlock2D(
|
306 |
+
(norm1): GroupNorm(32, 512, eps=1e-06, affine=True)
|
307 |
+
(conv1): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
308 |
+
(time_emb_proj): LoRACompatibleLinear(in_features=512, out_features=512, bias=True)
|
309 |
+
(norm2): GroupNorm(32, 512, eps=1e-06, affine=True)
|
310 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
311 |
+
(conv2): LoRACompatibleConv(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
312 |
+
(nonlinearity): SiLU()
|
313 |
+
)
|
314 |
+
)
|
315 |
+
)
|
316 |
+
(conv_norm_out): GroupNorm(32, 128, eps=1e-06, affine=True)
|
317 |
+
(conv_act): SiLU()
|
318 |
+
(conv_out): Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
319 |
+
)
|