--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.72 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2556 - Accuracy: 0.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2793 | 0.99 | 28 | 2.1814 | 0.28 | | 1.9466 | 1.98 | 56 | 1.9110 | 0.41 | | 1.7147 | 2.97 | 84 | 1.7353 | 0.47 | | 1.5161 | 4.0 | 113 | 1.5839 | 0.53 | | 1.3164 | 4.99 | 141 | 1.4552 | 0.62 | | 1.2924 | 5.98 | 169 | 1.4023 | 0.68 | | 1.1274 | 6.97 | 197 | 1.3962 | 0.65 | | 1.0276 | 8.0 | 226 | 1.2685 | 0.74 | | 0.967 | 8.99 | 254 | 1.2464 | 0.72 | | 0.9227 | 9.91 | 280 | 1.2556 | 0.72 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3