jjsprockel commited on
Commit
2c44003
1 Parent(s): a22c176

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -17,6 +17,57 @@ tags:
17
  - **License:** apache-2.0
18
  - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
17
  - **License:** apache-2.0
18
  - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
19
 
20
+ **Código para descarga:**
21
+ El siguiente es el código sugerido para descargar el modelo usando Unslot:
22
+
23
+ ```
24
+ import torch
25
+ from unsloth import FastLanguageModel
26
+ model, tokenizer = FastLanguageModel.from_pretrained(
27
+ model_name = "jjsprockel/Patologia_lora_model1", # YOUR MODEL YOU USED FOR TRAINING
28
+ max_seq_length = 2048, # Choose any! Llama 3 is up to 8k
29
+ dtype = None,
30
+ load_in_4bit = True,
31
+ )
32
+
33
+ FastLanguageModel.for_inference(model)
34
+
35
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
36
+
37
+ ### Instruction:
38
+ {}
39
+
40
+ ### Input:
41
+ {}
42
+
43
+ ### Response:
44
+ {}"""
45
+
46
+ ```
47
+
48
+ **Código para la inferencia:**
49
+
50
+ # Get the instruction from the console
51
+ El siguiente codigo demuestra como se puede llevar a cabo la inferencia.
52
+
53
+ ```
54
+ instruction = input("Ingresa la pregunta que tengas de Patología: ")
55
+
56
+ inputs = tokenizer(
57
+ [
58
+ alpaca_prompt.format(
59
+ instruction, # instruction
60
+ "", # input
61
+ "", # output - leave this blank for generation!
62
+ )
63
+ ], return_tensors = "pt").to("cuda")
64
+
65
+ from transformers import TextStreamer
66
+ text_streamer = TextStreamer(tokenizer)
67
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
68
+
69
+ ```
70
+
71
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
72
 
73
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)