File size: 1,634 Bytes
6a3f653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
metrics:
- f1
model-index:
- name: vit-base-beans-demo-v5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans-demo-v5

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the rvl-cdip, the cord, the receipts and the coco datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0017
- F1: 0.9990

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0033        | 0.23  | 100  | 0.0032          | 1.0    |
| 0.0017        | 0.45  | 200  | 0.0018          | 1.0    |
| 0.0012        | 0.68  | 300  | 0.0020          | 0.9990 |
| 0.001         | 0.91  | 400  | 0.0017          | 0.9990 |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.11.0+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1