--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: type: token-classification name: Token Classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - type: f1 value: 0.7023411371237458 name: F1 --- # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4292 - F1: 0.7023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 73 | 0.5589 | 0.5660 | | No log | 1.99 | 146 | 0.4565 | 0.6745 | | No log | 2.99 | 219 | 0.4292 | 0.7023 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2