--- license: mit base_model: gogamza/kobart-summarization tags: - generated_from_trainer model-index: - name: summary results: [] --- # summary This model is a fine-tuned version of [gogamza/kobart-summarization](https://huggingface.co./gogamza/kobart-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4775 | 1.42 | 500 | 0.3851 | | 0.2468 | 2.85 | 1000 | 0.3772 | | 0.1299 | 4.27 | 1500 | 0.4203 | | 0.0721 | 5.7 | 2000 | 0.4461 | | 0.0425 | 7.12 | 2500 | 0.4582 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0