File size: 1,530 Bytes
67d097e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: mit
base_model: gogamza/kobart-summarization
tags:
- generated_from_trainer
model-index:
- name: summary
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# summary
This model is a fine-tuned version of [gogamza/kobart-summarization](https://huggingface.co./gogamza/kobart-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4775 | 1.42 | 500 | 0.3851 |
| 0.2468 | 2.85 | 1000 | 0.3772 |
| 0.1299 | 4.27 | 1500 | 0.4203 |
| 0.0721 | 5.7 | 2000 | 0.4461 |
| 0.0425 | 7.12 | 2500 | 0.4582 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|