--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base.en tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-eng-transliterated-nep results: [] --- # whisper-base-eng-transliterated-nep This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co./openai/whisper-base.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6817 - Wer: 42.8102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.4867 | 3.0121 | 250 | 0.7501 | 50.5615 | | 0.1176 | 6.0242 | 500 | 0.6817 | 42.8102 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0