Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1746.56 +/- 112.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d49eb5a93ed015cefe3bb64eb570b61001d33716b60acaca4c50a69f128663bf
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f08e7771a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08e7771af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08e7771b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08e7771c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f08e7771ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f08e7771d30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f08e7771dc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08e7771e50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f08e7771ee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08e7771f70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08e7775040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08e77750d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f08e7774480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679278535321994352,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIjxnD+nVwK+dBL1PugmFUAx4Vq/KA3Cv4HGzD6/lta/kgMnP2GmUr0wgSc+O2jywNIuQr9wrpM/xTGhPpO9AEBnrY8+0pAOQKohAD8DeNm/5XGavT+aij42NElAkVdzP96T4L9w5LM+9kDyPrxtv7/I9uk/o+FSPt5nEz/M6Ps+f1ihvwIBOD+ojyM/Mn9Nv0wbJz8TCo28cg0vQP+4UL2xB76+dAmyv7RPIL+36O+964NtPSvC3b9F2Gu+yZ53vsUtdb8p6Uc8wd/7vhLdT8DT6BE/Qyc2wPZA8j68bb+/9M2OP/wH0L4Oz68+UgUmQKT4pb/+vw7AKFjnPFkxs78F/+k+oH2QP+77Pz6QdMLAIIQ0vyeiwj85tSo/Z30eQNU2SL/mUwRA93oAP1MYm78ii3W/scQcvb83C0AsBYE/3pPgv3Dksz5bQwfAvG2/v6ThWj+KpRM+KQ4QPw9hdD9OcJE/LWOKPxNEjD4/yqW/6/CTPttbGMCz6sA9kC3XPqgwA78L1Iu8VgUjPznxdb+LT5g/FqFuvkcd/T0GxBXATth0v6cNMD5V65o/86Zlv96T4L9w5LM+W0MHwBEtKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+zpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdyASvgAAAAAysuW/AAAAAHqs/j0AAAAAg8TmPwAAAABzIQU9AAAAAA5IAEAAAAAAm5bgPQAAAABLePq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFametQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP96gz0AAAAA1wjrvwAAAADJD4o7AAAAANPY+z8AAAAAd/PtvQAAAABXOfI/AAAAAJhkB74AAAAAoMb5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPVkQLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg13E8AAAAAJID378AAAAAeiUCvgAAAABhTvI/AAAAAPDP3z0AAAAARCvqPwAAAABvm8Q9AAAAAMpA778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUsze1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaZD1PAAAAACVD/G/AAAAADySAz4AAAAADU/0PwAAAAChL+m9AAAAABLC3j8AAAAAWJh4PAAAAADiFd+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtAtCx/usuMAWyUTegDjAF0lEdAq0tC0F8ohXV9lChoBkdAmu6845tFa2gHTegDaAhHQKtM69jgAIZ1fZQoaAZHQJvxM2AG0NVoB03oA2gIR0CrU2OzY287dX2UKGgGR0CcQGDEm6XjaAdN6ANoCEdAq1aUxXXAdnV9lChoBkdAmhfB5LRKH2gHTegDaAhHQKtZzxQzk6t1fZQoaAZHQJo8bqRlpXZoB03oA2gIR0CrXJNW+49YdX2UKGgGR0CbRFX6ZYxMaAdN6ANoCEdAq2PrPY4ACHV9lChoBkdAmuhurp7kXGgHTegDaAhHQKtmO/A0sOJ1fZQoaAZHQJpquROk+HJoB03oA2gIR0CraFAMc6vJdX2UKGgGR0CaCT7CSA6NaAdN6ANoCEdAq2oVAmiQDHV9lChoBkdAnQq0+PikwmgHTegDaAhHQKtwmOU+s5p1fZQoaAZHQJtKporWiDdoB03oA2gIR0Crczqt5le4dX2UKGgGR0CR3E/o7muDaAdN6ANoCEdAq3Yjh3qzJXV9lChoBkdAmC0k12q1gGgHTegDaAhHQKt4ulrM1TB1fZQoaAZHQJk7o/8l5W1oB03oA2gIR0CrgJs54nnddX2UKGgGR0Cb8bZuhsZYaAdN6ANoCEdAq4L5/kNnXnV9lChoBkdAmVcg7xNIsmgHTegDaAhHQKuE/nbqQil1fZQoaAZHQJxEHJ3gUDdoB03oA2gIR0Crhq1Li++NdX2UKGgGR0CW1xRjz7MxaAdN6ANoCEdAq40QhdMTOHV9lChoBkdAmKvE1EVnEmgHTegDaAhHQKuPXcu8K5V1fZQoaAZHQJ3w4XenAIpoB03oA2gIR0CrkaY64lQedX2UKGgGR0CdIeQgLZzxaAdN6ANoCEdAq5QRisny/nV9lChoBkdAm6tTUy57PmgHTegDaAhHQKudBTefqX51fZQoaAZHQI4rFUjs2NxoB03oA2gIR0Crn2RX4j8ldX2UKGgGR0CUAvBkqc3EaAdN6ANoCEdAq6Fxb4agmXV9lChoBkdAmIolc6eXiWgHTegDaAhHQKujJ6mfoRt1fZQoaAZHQJCdf5ULlV9oB03oA2gIR0CrqXtGViWndX2UKGgGR0CVAGTSLIgeaAdN6ANoCEdAq6vBRCQcP3V9lChoBkdAl5VXD3ueBmgHTegDaAhHQKutzmFrVON1fZQoaAZHQJAbz3rUsnRoB03oA2gIR0Crr4ZZbILgdX2UKGgGR0CQwe3Sro4daAdN6ANoCEdAq7kdvZRKpXV9lChoBkdAlnML1EmY0GgHTegDaAhHQKu7lY5DJEJ1fZQoaAZHQI3ndZV4oqloB03oA2gIR0CrvaHndO6/dX2UKGgGR0CME0ejmCAdaAdN6ANoCEdAq79W0b961XV9lChoBkdAlxVPhuO0cGgHTegDaAhHQKvF1FrEcbR1fZQoaAZHQJOlR9srNGFoB03oA2gIR0CryBjFAE+xdX2UKGgGR0CW/d9A5aNdaAdN6ANoCEdAq8oliKBNEnV9lChoBkdAl3K686FM7GgHTegDaAhHQKvL4VrylN11fZQoaAZHQIilAMpgCwNoB03oA2gIR0Cr1LMAeaKDdX2UKGgGR0CX1XS1E3KkaAdN6ANoCEdAq9h4iTt9hXV9lChoBkdAkAxXXyy2QWgHTegDaAhHQKvaeYtxuKp1fZQoaAZHQJKqOBDohZBoB03oA2gIR0Cr3ClpoK2KdX2UKGgGR0CbeziCJ40NaAdN6ANoCEdAq+KIBDG96HV9lChoBkdAmV1BJRO1v2gHTegDaAhHQKvk1/HYHxB1fZQoaAZHQJ1rSUFB6a9oB03oA2gIR0Cr5uC8OCoTdX2UKGgGR0CZ7flum78OaAdN6ANoCEdAq+iVB6a9b3V9lChoBkdAnDaYB3iaRmgHTegDaAhHQKvwGdMj/uN1fZQoaAZHQJsepPP9kz5oB03oA2gIR0Cr85HgP3BYdX2UKGgGR0Ca+/hvR7Z4aAdN6ANoCEdAq/ayiTMaCXV9lChoBkdAmPg2S2Yv4GgHTegDaAhHQKv4bN7jT8Z1fZQoaAZHQJzNjq0MPSVoB03oA2gIR0Cr/sX7tRekdX2UKGgGR0Cc5iXbdrO8aAdN6ANoCEdArAES4YrJ83V9lChoBkdAnOqYFvAGjmgHTegDaAhHQKwDIaxX4j91fZQoaAZHQJv0OqvNeMRoB03oA2gIR0CsBNl+Vkc0dX2UKGgGR0Cb+Trwe/5+aAdN6ANoCEdArAuGqDK5kXV9lChoBkdAmh/eH31zyWgHTegDaAhHQKwO3RWtEG91fZQoaAZHQJuHkoRZlnRoB03oA2gIR0CsEfTx5LRKdX2UKGgGR0CZMDiADq4ZaAdN6ANoCEdArBSgWi1zAHV9lChoBkdAmImDjebd8GgHTegDaAhHQKwbTUdaMaV1fZQoaAZHQJlgi+UQkHFoB03oA2gIR0CsHYw9zOopdX2UKGgGR0CWzV6jFhoeaAdN6ANoCEdArB+RpSJj2HV9lChoBkdAlVmv9xZMc2gHTegDaAhHQKwhQ2AoXsR1fZQoaAZHQJFuSITGo75oB03oA2gIR0CsJ6YiosI3dX2UKGgGR0CaImgam4y5aAdN6ANoCEdArCo/azu4PXV9lChoBkdAk2fT6nBLwmgHTegDaAhHQKwtJGCI1tR1fZQoaAZHQJivviR4hU1oB03oA2gIR0CsL7vYWcjJdX2UKGgGR0CRYJxxDLKWaAdN6ANoCEdArDd6ZQYUFnV9lChoBkdAm7aEMLF4s2gHTegDaAhHQKw5vMJx//h1fZQoaAZHQJaY6wGGEf1oB03oA2gIR0CsO8OZb6gvdX2UKGgGR0CYXxRkmQbNaAdN6ANoCEdArD1tFfAsTXV9lChoBkdAnC4w44p+dGgHTegDaAhHQKxD08vEjxF1fZQoaAZHQJysrCN0eU9oB03oA2gIR0CsRh/3WWhRdX2UKGgGR0Ca3qwxnFo+aAdN6ANoCEdArEhmAd4mkXV9lChoBkdAm148uSOinGgHTegDaAhHQKxK3cfvF3p1fZQoaAZHQJ79mNGViWpoB03oA2gIR0CsVClBIFvAdX2UKGgGR0Ce1IxC6YmcaAdN6ANoCEdArFZmgHu7YnV9lChoBkdAnr+Dh1klNWgHTegDaAhHQKxYZ+c6Nl11fZQoaAZHQJ6+1fiPyTZoB03oA2gIR0CsWhfIbOu8dX2UKGgGR0CbkZFWGRFJaAdN6ANoCEdArGB19Dx9X3V9lChoBkdAnydPwVj7RGgHTegDaAhHQKxivGPxQSB1fZQoaAZHQKA4lLt/nW9oB03oA2gIR0CsZMfwAlv7dX2UKGgGR0Ce4kllbu+iaAdN6ANoCEdArGaFOIqLCXV9lChoBkdAnfQQKjSG8GgHTegDaAhHQKxwNGkvboN1fZQoaAZHQJ9xe8AaNuNoB03oA2gIR0Csct77sOXmdX2UKGgGR0Cek0rqMWGiaAdN6ANoCEdArHTs9dNWVHV9lChoBkdAmeKEjTrmhmgHTegDaAhHQKx2rgjQiRp1fZQoaAZHQJvqxAs052hoB03oA2gIR0CsfQo2GZeBdX2UKGgGR0CJGAhmGucMaAdN6ANoCEdArH9ZGjKxLXV9lChoBkdAc5o0pmVZ92gHTegDaAhHQKyBXru6VdJ1fZQoaAZHQJiU/mzSkTJoB03oA2gIR0Csgw2xQizLdX2UKGgGR0Cbo+WqtHQQaAdN6ANoCEdArIuNr2xptnV9lChoBkdAneC2ZJCjUWgHTegDaAhHQKyPE2y9mHx1fZQoaAZHQJza+uU2UB5oB03oA2gIR0CskUWO6unudX2UKGgGR0CceWhz/6wdaAdN6ANoCEdArJL863iJf3V9lChoBkdAllZv/JeVs2gHTegDaAhHQKyZZDYRNAV1fZQoaAZHQJnHKQcPvrpoB03oA2gIR0Csm6zPBzmwdX2UKGgGR0CaGg+SKWLQaAdN6ANoCEdArJ2tSn+AE3V9lChoBkdAmdD3DFZPmGgHTegDaAhHQKyfUF6Avtd1fZQoaAZHQJhMGKWLP2RoB03oA2gIR0Cspp16Vt4zdX2UKGgGR0CbZEnRsuWbaAdN6ANoCEdArKoZKvmoznVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62823,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a043d0742e791fecb6de3e2fb7b02806ab4d8611bfa9be2b7bb9c9046f6eaf88
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a5df1eb308d833cd0b1358673f02f4c264827364f08191facaf1cde2bbdf814
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08e7771a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08e7771af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08e7771b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08e7771c10>", "_build": "<function ActorCriticPolicy._build at 0x7f08e7771ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f08e7771d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f08e7771dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08e7771e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f08e7771ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08e7771f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08e7775040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08e77750d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f08e7774480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679278535321994352, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIjxnD+nVwK+dBL1PugmFUAx4Vq/KA3Cv4HGzD6/lta/kgMnP2GmUr0wgSc+O2jywNIuQr9wrpM/xTGhPpO9AEBnrY8+0pAOQKohAD8DeNm/5XGavT+aij42NElAkVdzP96T4L9w5LM+9kDyPrxtv7/I9uk/o+FSPt5nEz/M6Ps+f1ihvwIBOD+ojyM/Mn9Nv0wbJz8TCo28cg0vQP+4UL2xB76+dAmyv7RPIL+36O+964NtPSvC3b9F2Gu+yZ53vsUtdb8p6Uc8wd/7vhLdT8DT6BE/Qyc2wPZA8j68bb+/9M2OP/wH0L4Oz68+UgUmQKT4pb/+vw7AKFjnPFkxs78F/+k+oH2QP+77Pz6QdMLAIIQ0vyeiwj85tSo/Z30eQNU2SL/mUwRA93oAP1MYm78ii3W/scQcvb83C0AsBYE/3pPgv3Dksz5bQwfAvG2/v6ThWj+KpRM+KQ4QPw9hdD9OcJE/LWOKPxNEjD4/yqW/6/CTPttbGMCz6sA9kC3XPqgwA78L1Iu8VgUjPznxdb+LT5g/FqFuvkcd/T0GxBXATth0v6cNMD5V65o/86Zlv96T4L9w5LM+W0MHwBEtKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+zpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdyASvgAAAAAysuW/AAAAAHqs/j0AAAAAg8TmPwAAAABzIQU9AAAAAA5IAEAAAAAAm5bgPQAAAABLePq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFametQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP96gz0AAAAA1wjrvwAAAADJD4o7AAAAANPY+z8AAAAAd/PtvQAAAABXOfI/AAAAAJhkB74AAAAAoMb5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPVkQLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg13E8AAAAAJID378AAAAAeiUCvgAAAABhTvI/AAAAAPDP3z0AAAAARCvqPwAAAABvm8Q9AAAAAMpA778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUsze1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaZD1PAAAAACVD/G/AAAAADySAz4AAAAADU/0PwAAAAChL+m9AAAAABLC3j8AAAAAWJh4PAAAAADiFd+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtAtCx/usuMAWyUTegDjAF0lEdAq0tC0F8ohXV9lChoBkdAmu6845tFa2gHTegDaAhHQKtM69jgAIZ1fZQoaAZHQJvxM2AG0NVoB03oA2gIR0CrU2OzY287dX2UKGgGR0CcQGDEm6XjaAdN6ANoCEdAq1aUxXXAdnV9lChoBkdAmhfB5LRKH2gHTegDaAhHQKtZzxQzk6t1fZQoaAZHQJo8bqRlpXZoB03oA2gIR0CrXJNW+49YdX2UKGgGR0CbRFX6ZYxMaAdN6ANoCEdAq2PrPY4ACHV9lChoBkdAmuhurp7kXGgHTegDaAhHQKtmO/A0sOJ1fZQoaAZHQJpquROk+HJoB03oA2gIR0CraFAMc6vJdX2UKGgGR0CaCT7CSA6NaAdN6ANoCEdAq2oVAmiQDHV9lChoBkdAnQq0+PikwmgHTegDaAhHQKtwmOU+s5p1fZQoaAZHQJtKporWiDdoB03oA2gIR0Crczqt5le4dX2UKGgGR0CR3E/o7muDaAdN6ANoCEdAq3Yjh3qzJXV9lChoBkdAmC0k12q1gGgHTegDaAhHQKt4ulrM1TB1fZQoaAZHQJk7o/8l5W1oB03oA2gIR0CrgJs54nnddX2UKGgGR0Cb8bZuhsZYaAdN6ANoCEdAq4L5/kNnXnV9lChoBkdAmVcg7xNIsmgHTegDaAhHQKuE/nbqQil1fZQoaAZHQJxEHJ3gUDdoB03oA2gIR0Crhq1Li++NdX2UKGgGR0CW1xRjz7MxaAdN6ANoCEdAq40QhdMTOHV9lChoBkdAmKvE1EVnEmgHTegDaAhHQKuPXcu8K5V1fZQoaAZHQJ3w4XenAIpoB03oA2gIR0CrkaY64lQedX2UKGgGR0CdIeQgLZzxaAdN6ANoCEdAq5QRisny/nV9lChoBkdAm6tTUy57PmgHTegDaAhHQKudBTefqX51fZQoaAZHQI4rFUjs2NxoB03oA2gIR0Crn2RX4j8ldX2UKGgGR0CUAvBkqc3EaAdN6ANoCEdAq6Fxb4agmXV9lChoBkdAmIolc6eXiWgHTegDaAhHQKujJ6mfoRt1fZQoaAZHQJCdf5ULlV9oB03oA2gIR0CrqXtGViWndX2UKGgGR0CVAGTSLIgeaAdN6ANoCEdAq6vBRCQcP3V9lChoBkdAl5VXD3ueBmgHTegDaAhHQKutzmFrVON1fZQoaAZHQJAbz3rUsnRoB03oA2gIR0Crr4ZZbILgdX2UKGgGR0CQwe3Sro4daAdN6ANoCEdAq7kdvZRKpXV9lChoBkdAlnML1EmY0GgHTegDaAhHQKu7lY5DJEJ1fZQoaAZHQI3ndZV4oqloB03oA2gIR0CrvaHndO6/dX2UKGgGR0CME0ejmCAdaAdN6ANoCEdAq79W0b961XV9lChoBkdAlxVPhuO0cGgHTegDaAhHQKvF1FrEcbR1fZQoaAZHQJOlR9srNGFoB03oA2gIR0CryBjFAE+xdX2UKGgGR0CW/d9A5aNdaAdN6ANoCEdAq8oliKBNEnV9lChoBkdAl3K686FM7GgHTegDaAhHQKvL4VrylN11fZQoaAZHQIilAMpgCwNoB03oA2gIR0Cr1LMAeaKDdX2UKGgGR0CX1XS1E3KkaAdN6ANoCEdAq9h4iTt9hXV9lChoBkdAkAxXXyy2QWgHTegDaAhHQKvaeYtxuKp1fZQoaAZHQJKqOBDohZBoB03oA2gIR0Cr3ClpoK2KdX2UKGgGR0CbeziCJ40NaAdN6ANoCEdAq+KIBDG96HV9lChoBkdAmV1BJRO1v2gHTegDaAhHQKvk1/HYHxB1fZQoaAZHQJ1rSUFB6a9oB03oA2gIR0Cr5uC8OCoTdX2UKGgGR0CZ7flum78OaAdN6ANoCEdAq+iVB6a9b3V9lChoBkdAnDaYB3iaRmgHTegDaAhHQKvwGdMj/uN1fZQoaAZHQJsepPP9kz5oB03oA2gIR0Cr85HgP3BYdX2UKGgGR0Ca+/hvR7Z4aAdN6ANoCEdAq/ayiTMaCXV9lChoBkdAmPg2S2Yv4GgHTegDaAhHQKv4bN7jT8Z1fZQoaAZHQJzNjq0MPSVoB03oA2gIR0Cr/sX7tRekdX2UKGgGR0Cc5iXbdrO8aAdN6ANoCEdArAES4YrJ83V9lChoBkdAnOqYFvAGjmgHTegDaAhHQKwDIaxX4j91fZQoaAZHQJv0OqvNeMRoB03oA2gIR0CsBNl+Vkc0dX2UKGgGR0Cb+Trwe/5+aAdN6ANoCEdArAuGqDK5kXV9lChoBkdAmh/eH31zyWgHTegDaAhHQKwO3RWtEG91fZQoaAZHQJuHkoRZlnRoB03oA2gIR0CsEfTx5LRKdX2UKGgGR0CZMDiADq4ZaAdN6ANoCEdArBSgWi1zAHV9lChoBkdAmImDjebd8GgHTegDaAhHQKwbTUdaMaV1fZQoaAZHQJlgi+UQkHFoB03oA2gIR0CsHYw9zOopdX2UKGgGR0CWzV6jFhoeaAdN6ANoCEdArB+RpSJj2HV9lChoBkdAlVmv9xZMc2gHTegDaAhHQKwhQ2AoXsR1fZQoaAZHQJFuSITGo75oB03oA2gIR0CsJ6YiosI3dX2UKGgGR0CaImgam4y5aAdN6ANoCEdArCo/azu4PXV9lChoBkdAk2fT6nBLwmgHTegDaAhHQKwtJGCI1tR1fZQoaAZHQJivviR4hU1oB03oA2gIR0CsL7vYWcjJdX2UKGgGR0CRYJxxDLKWaAdN6ANoCEdArDd6ZQYUFnV9lChoBkdAm7aEMLF4s2gHTegDaAhHQKw5vMJx//h1fZQoaAZHQJaY6wGGEf1oB03oA2gIR0CsO8OZb6gvdX2UKGgGR0CYXxRkmQbNaAdN6ANoCEdArD1tFfAsTXV9lChoBkdAnC4w44p+dGgHTegDaAhHQKxD08vEjxF1fZQoaAZHQJysrCN0eU9oB03oA2gIR0CsRh/3WWhRdX2UKGgGR0Ca3qwxnFo+aAdN6ANoCEdArEhmAd4mkXV9lChoBkdAm148uSOinGgHTegDaAhHQKxK3cfvF3p1fZQoaAZHQJ79mNGViWpoB03oA2gIR0CsVClBIFvAdX2UKGgGR0Ce1IxC6YmcaAdN6ANoCEdArFZmgHu7YnV9lChoBkdAnr+Dh1klNWgHTegDaAhHQKxYZ+c6Nl11fZQoaAZHQJ6+1fiPyTZoB03oA2gIR0CsWhfIbOu8dX2UKGgGR0CbkZFWGRFJaAdN6ANoCEdArGB19Dx9X3V9lChoBkdAnydPwVj7RGgHTegDaAhHQKxivGPxQSB1fZQoaAZHQKA4lLt/nW9oB03oA2gIR0CsZMfwAlv7dX2UKGgGR0Ce4kllbu+iaAdN6ANoCEdArGaFOIqLCXV9lChoBkdAnfQQKjSG8GgHTegDaAhHQKxwNGkvboN1fZQoaAZHQJ9xe8AaNuNoB03oA2gIR0Csct77sOXmdX2UKGgGR0Cek0rqMWGiaAdN6ANoCEdArHTs9dNWVHV9lChoBkdAmeKEjTrmhmgHTegDaAhHQKx2rgjQiRp1fZQoaAZHQJvqxAs052hoB03oA2gIR0CsfQo2GZeBdX2UKGgGR0CJGAhmGucMaAdN6ANoCEdArH9ZGjKxLXV9lChoBkdAc5o0pmVZ92gHTegDaAhHQKyBXru6VdJ1fZQoaAZHQJiU/mzSkTJoB03oA2gIR0Csgw2xQizLdX2UKGgGR0Cbo+WqtHQQaAdN6ANoCEdArIuNr2xptnV9lChoBkdAneC2ZJCjUWgHTegDaAhHQKyPE2y9mHx1fZQoaAZHQJza+uU2UB5oB03oA2gIR0CskUWO6unudX2UKGgGR0CceWhz/6wdaAdN6ANoCEdArJL863iJf3V9lChoBkdAllZv/JeVs2gHTegDaAhHQKyZZDYRNAV1fZQoaAZHQJnHKQcPvrpoB03oA2gIR0Csm6zPBzmwdX2UKGgGR0CaGg+SKWLQaAdN6ANoCEdArJ2tSn+AE3V9lChoBkdAmdD3DFZPmGgHTegDaAhHQKyfUF6Avtd1fZQoaAZHQJhMGKWLP2RoB03oA2gIR0Cspp16Vt4zdX2UKGgGR0CbZEnRsuWbaAdN6ANoCEdArKoZKvmoznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62823, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11c02b2b38b61a0e8a7ed3ff7ebcc78462341662b4ede67cb572f4b3358ac25d
|
3 |
+
size 1076160
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1746.5572468948317, "std_reward": 112.34698723529318, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T03:16:32.444853"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a545846507d0e03dfc95bdfa8fb573781ad256acf37f471736abfc845ad0373
|
3 |
+
size 2136
|