Create modeling_roberta_ner.py
Browse files- modeling_roberta_ner.py +92 -0
modeling_roberta_ner.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from transformers import RobertaPreTrainedModel, RobertaModel
|
3 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
4 |
+
|
5 |
+
|
6 |
+
class RobertaClassificationHead(nn.Module):
|
7 |
+
"""Head for sentence-level classification tasks."""
|
8 |
+
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__()
|
11 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
12 |
+
classifier_dropout = (
|
13 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
14 |
+
)
|
15 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
16 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
17 |
+
|
18 |
+
def forward(self, x, **kwargs):
|
19 |
+
x = self.dropout(x)
|
20 |
+
x = self.dense(x)
|
21 |
+
x = torch.tanh(x)
|
22 |
+
x = self.dropout(x)
|
23 |
+
x = self.out_proj(x)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
class RobertaForCharNER(RobertaPreTrainedModel):
|
28 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
29 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
30 |
+
|
31 |
+
def __init__(self, config):
|
32 |
+
super().__init__(config)
|
33 |
+
self.num_labels = config.num_labels
|
34 |
+
|
35 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
36 |
+
self.classifier = RobertaClassificationHead(config)
|
37 |
+
|
38 |
+
self.init_weights()
|
39 |
+
|
40 |
+
def forward(
|
41 |
+
self,
|
42 |
+
input_ids=None,
|
43 |
+
attention_mask=None,
|
44 |
+
token_type_ids=None,
|
45 |
+
position_ids=None,
|
46 |
+
head_mask=None,
|
47 |
+
inputs_embeds=None,
|
48 |
+
labels=None,
|
49 |
+
output_attentions=None,
|
50 |
+
output_hidden_states=None,
|
51 |
+
return_dict=None,
|
52 |
+
):
|
53 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
54 |
+
|
55 |
+
outputs = self.roberta(
|
56 |
+
input_ids,
|
57 |
+
attention_mask=attention_mask,
|
58 |
+
token_type_ids=token_type_ids,
|
59 |
+
position_ids=position_ids,
|
60 |
+
head_mask=head_mask,
|
61 |
+
inputs_embeds=inputs_embeds,
|
62 |
+
output_attentions=output_attentions,
|
63 |
+
output_hidden_states=output_hidden_states,
|
64 |
+
return_dict=return_dict,
|
65 |
+
)
|
66 |
+
sequence_output = outputs[0]
|
67 |
+
logits = self.classifier(sequence_output)
|
68 |
+
|
69 |
+
loss = None
|
70 |
+
if labels is not None:
|
71 |
+
loss_fct = nn.CrossEntropyLoss()
|
72 |
+
# Only keep active parts of the loss
|
73 |
+
if attention_mask is not None:
|
74 |
+
active_loss = attention_mask.view(-1) == 1
|
75 |
+
active_logits = logits.view(-1, self.num_labels)
|
76 |
+
active_labels = torch.where(
|
77 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
78 |
+
)
|
79 |
+
loss = loss_fct(active_logits, active_labels)
|
80 |
+
else:
|
81 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
82 |
+
|
83 |
+
if not return_dict:
|
84 |
+
output = (logits,) + outputs[2:]
|
85 |
+
return ((loss,) + output) if loss is not None else output
|
86 |
+
|
87 |
+
return TokenClassifierOutput(
|
88 |
+
loss=loss,
|
89 |
+
logits=logits,
|
90 |
+
hidden_states=outputs.hidden_states,
|
91 |
+
attentions=outputs.attentions,
|
92 |
+
)
|