from transformers import PretrainedConfig from typing import List class LMConfig(PretrainedConfig): model_type = "minimind" def __init__( self, dim: int = 768, n_layers: int = 16, n_heads: int = 16, n_kv_heads: int = 8, vocab_size: int = 6400, hidden_dim: int = None, multiple_of: int = 64, norm_eps: float = 1e-5, max_seq_len: int = 512, dropout: float = 0.0, flash_attn: bool = True, #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### use_moe: bool = False, num_experts_per_tok=2, n_routed_experts=4, n_shared_experts: bool = True, scoring_func='softmax', aux_loss_alpha=0.01, seq_aux=True, norm_topk_prob=True, **kwargs, ): self.dim = dim self.n_layers = n_layers self.n_heads = n_heads self.n_kv_heads = n_kv_heads self.vocab_size = vocab_size self.hidden_dim = hidden_dim self.multiple_of = multiple_of self.norm_eps = norm_eps self.max_seq_len = max_seq_len self.dropout = dropout self.flash_attn = flash_attn #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### self.use_moe = use_moe self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量 self.n_routed_experts = n_routed_experts # 总的专家数量 self.n_shared_experts = n_shared_experts # 共享专家 self.scoring_func = scoring_func # 评分函数,默认为'softmax' self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数 self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失 self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率 super().__init__(**kwargs)