|
from transformers import PretrainedConfig
|
|
from typing import List
|
|
|
|
|
|
class LMConfig(PretrainedConfig):
|
|
model_type = "minimind"
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int = 768,
|
|
n_layers: int = 16,
|
|
n_heads: int = 16,
|
|
n_kv_heads: int = 8,
|
|
vocab_size: int = 6400,
|
|
hidden_dim: int = None,
|
|
multiple_of: int = 64,
|
|
norm_eps: float = 1e-5,
|
|
max_seq_len: int = 512,
|
|
dropout: float = 0.0,
|
|
flash_attn: bool = True,
|
|
|
|
|
|
|
|
|
|
use_moe: bool = False,
|
|
num_experts_per_tok=2,
|
|
n_routed_experts=4,
|
|
n_shared_experts: bool = True,
|
|
scoring_func='softmax',
|
|
aux_loss_alpha=0.01,
|
|
seq_aux=True,
|
|
norm_topk_prob=True,
|
|
**kwargs,
|
|
):
|
|
self.dim = dim
|
|
self.n_layers = n_layers
|
|
self.n_heads = n_heads
|
|
self.n_kv_heads = n_kv_heads
|
|
self.vocab_size = vocab_size
|
|
self.hidden_dim = hidden_dim
|
|
self.multiple_of = multiple_of
|
|
self.norm_eps = norm_eps
|
|
self.max_seq_len = max_seq_len
|
|
self.dropout = dropout
|
|
self.flash_attn = flash_attn
|
|
|
|
|
|
|
|
|
|
self.use_moe = use_moe
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.n_routed_experts = n_routed_experts
|
|
self.n_shared_experts = n_shared_experts
|
|
self.scoring_func = scoring_func
|
|
self.aux_loss_alpha = aux_loss_alpha
|
|
self.seq_aux = seq_aux
|
|
self.norm_topk_prob = norm_topk_prob
|
|
super().__init__(**kwargs)
|
|
|