|
import math
|
|
import struct
|
|
import inspect
|
|
import time
|
|
|
|
from .LMConfig import LMConfig
|
|
from typing import Any, Optional, Tuple
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from transformers import PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, dim: int, eps: float):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device)
|
|
freqs = torch.outer(t, freqs).float()
|
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
return pos_cis
|
|
|
|
|
|
def apply_rotary_emb(xq, xk, pos_cis):
|
|
def unite_shape(pos_cis, x):
|
|
ndim = x.ndim
|
|
assert 0 <= 1 < ndim
|
|
assert pos_cis.shape == (x.shape[1], x.shape[-1])
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|
return pos_cis.view(*shape)
|
|
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
pos_cis = unite_shape(pos_cis, xq_)
|
|
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
|
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
bs, slen, n_kv_heads, head_dim = x.shape
|
|
if n_rep == 1:
|
|
return x
|
|
return (
|
|
x[:, :, :, None, :]
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|
)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: LMConfig):
|
|
super().__init__()
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
assert args.n_heads % self.n_kv_heads == 0
|
|
self.n_local_heads = args.n_heads
|
|
self.n_local_kv_heads = self.n_kv_heads
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
|
self.k_cache, self.v_cache = None, None
|
|
self.attn_dropout = nn.Dropout(args.dropout)
|
|
self.resid_dropout = nn.Dropout(args.dropout)
|
|
self.dropout = args.dropout
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
|
|
|
|
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
|
mask = torch.triu(mask, diagonal=1)
|
|
self.register_buffer("mask", mask)
|
|
|
|
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor, kv_cache=False):
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
|
|
|
|
|
if kv_cache and self.eval():
|
|
if seqlen == 1 and all(cache is not None for cache in (self.k_cache, self.v_cache)):
|
|
xk = torch.cat((self.k_cache, xk), dim=1)
|
|
xv = torch.cat((self.v_cache, xv), dim=1)
|
|
self.k_cache, self.v_cache = xk, xv
|
|
|
|
xk = repeat_kv(xk, self.n_rep)
|
|
xv = repeat_kv(xv, self.n_rep)
|
|
|
|
xq = xq.transpose(1, 2)
|
|
xk = xk.transpose(1, 2)
|
|
xv = xv.transpose(1, 2)
|
|
|
|
if self.flash and seqlen != 1:
|
|
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
|
|
dropout_p=self.dropout if self.training else 0.0,
|
|
is_causal=True)
|
|
else:
|
|
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
scores = scores + self.mask[:, :, :seqlen, :seqlen]
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|
scores = self.attn_dropout(scores)
|
|
output = torch.matmul(scores, xv)
|
|
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
|
|
|
output = self.wo(output)
|
|
output = self.resid_dropout(output)
|
|
return output
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
|
|
super().__init__()
|
|
if hidden_dim is None:
|
|
hidden_dim = 4 * dim
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
|
|
|
|
|
class MoEGate(nn.Module):
|
|
def __init__(self, config: LMConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.top_k = config.num_experts_per_tok
|
|
self.n_routed_experts = config.n_routed_experts
|
|
|
|
self.scoring_func = config.scoring_func
|
|
self.alpha = config.aux_loss_alpha
|
|
self.seq_aux = config.seq_aux
|
|
|
|
self.norm_topk_prob = config.norm_topk_prob
|
|
self.gating_dim = config.dim
|
|
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self) -> None:
|
|
import torch.nn.init as init
|
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
|
|
|
def forward(self, hidden_states):
|
|
bsz, seq_len, h = hidden_states.shape
|
|
|
|
hidden_states = hidden_states.view(-1, h)
|
|
logits = F.linear(hidden_states, self.weight, None)
|
|
if self.scoring_func == 'softmax':
|
|
scores = logits.softmax(dim=-1)
|
|
else:
|
|
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
|
|
|
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
|
|
|
if self.top_k > 1 and self.norm_topk_prob:
|
|
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
|
topk_weight = topk_weight / denominator
|
|
|
|
if self.training and self.alpha > 0.0:
|
|
scores_for_aux = scores
|
|
aux_topk = self.top_k
|
|
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
|
if self.seq_aux:
|
|
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
|
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
|
ce.scatter_add_(1, topk_idx_for_aux_loss,
|
|
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
|
|
seq_len * aux_topk / self.n_routed_experts)
|
|
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
|
|
else:
|
|
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
|
ce = mask_ce.float().mean(0)
|
|
Pi = scores_for_aux.mean(0)
|
|
fi = ce * self.n_routed_experts
|
|
aux_loss = (Pi * fi).sum() * self.alpha
|
|
else:
|
|
aux_loss = None
|
|
return topk_idx, topk_weight, aux_loss
|
|
|
|
|
|
class MOEFeedForward(nn.Module):
|
|
def __init__(self, config: LMConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.experts = nn.ModuleList([
|
|
FeedForward(
|
|
dim=config.dim,
|
|
hidden_dim=config.hidden_dim,
|
|
multiple_of=config.multiple_of,
|
|
dropout=config.dropout,
|
|
)
|
|
for _ in range(config.n_routed_experts)
|
|
])
|
|
|
|
self.gate = MoEGate(config)
|
|
if config.n_shared_experts is not None:
|
|
self.shared_experts = FeedForward(
|
|
dim=config.dim,
|
|
hidden_dim=config.hidden_dim,
|
|
multiple_of=config.multiple_of,
|
|
dropout=config.dropout,
|
|
)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
orig_shape = x.shape
|
|
bsz, seq_len, _ = x.shape
|
|
|
|
|
|
topk_idx, topk_weight, aux_loss = self.gate(x)
|
|
|
|
x = x.view(-1, x.shape[-1])
|
|
flat_topk_idx = topk_idx.view(-1)
|
|
|
|
if self.training:
|
|
|
|
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
|
y = torch.empty_like(x, dtype=torch.float16)
|
|
for i, expert in enumerate(self.experts):
|
|
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
|
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
|
y = y.view(*orig_shape)
|
|
else:
|
|
|
|
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
|
|
|
if self.config.n_shared_experts is not None:
|
|
y = y + self.shared_experts(identity)
|
|
|
|
return y
|
|
|
|
@torch.no_grad()
|
|
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
|
expert_cache = torch.zeros_like(x)
|
|
idxs = flat_expert_indices.argsort()
|
|
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
|
token_idxs = idxs // self.config.num_experts_per_tok
|
|
|
|
|
|
|
|
for i, end_idx in enumerate(tokens_per_expert):
|
|
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
|
if start_idx == end_idx:
|
|
continue
|
|
expert = self.experts[i]
|
|
exp_token_idx = token_idxs[start_idx:end_idx]
|
|
expert_tokens = x[exp_token_idx]
|
|
expert_out = expert(expert_tokens)
|
|
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
|
|
|
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
|
|
|
return expert_cache
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, layer_id: int, args: LMConfig):
|
|
super().__init__()
|
|
self.n_heads = args.n_heads
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.attention = Attention(args)
|
|
|
|
self.layer_id = layer_id
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
if args.use_moe:
|
|
self.feed_forward = MOEFeedForward(args)
|
|
else:
|
|
self.feed_forward = FeedForward(
|
|
dim=args.dim,
|
|
hidden_dim=args.hidden_dim,
|
|
multiple_of=args.multiple_of,
|
|
dropout=args.dropout,
|
|
)
|
|
|
|
def forward(self, x, pos_cis, kv_cache=False):
|
|
h = x + self.attention(self.attention_norm(x), pos_cis, kv_cache)
|
|
out = h + self.feed_forward(self.ffn_norm(h))
|
|
return out
|
|
|
|
|
|
class Transformer(PreTrainedModel):
|
|
config_class = LMConfig
|
|
last_loss: Optional[torch.Tensor]
|
|
|
|
def __init__(self, params: LMConfig = None):
|
|
super().__init__(params)
|
|
if not params:
|
|
params = LMConfig()
|
|
self.params = params
|
|
self.vocab_size = params.vocab_size
|
|
self.n_layers = params.n_layers
|
|
|
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
|
self.dropout = nn.Dropout(params.dropout)
|
|
self.layers = torch.nn.ModuleList()
|
|
for layer_id in range(self.n_layers):
|
|
self.layers.append(TransformerBlock(layer_id, params))
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
|
self.tok_embeddings.weight = self.output.weight
|
|
pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
|
|
self.register_buffer("pos_cis", pos_cis, persistent=False)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
for pn, p in self.named_parameters():
|
|
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
|
|
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))
|
|
|
|
self.last_loss = None
|
|
self.OUT = CausalLMOutputWithPast()
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, tokens: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None,
|
|
kv_cache=False, **keyargs):
|
|
current_idx = 0
|
|
if 'input_ids' in keyargs:
|
|
tokens = keyargs['input_ids']
|
|
if 'attention_mask' in keyargs:
|
|
targets = keyargs['attention_mask']
|
|
if 'current_idx' in keyargs:
|
|
current_idx = int(keyargs['current_idx'])
|
|
|
|
_bsz, seqlen = tokens.shape
|
|
h = self.tok_embeddings(tokens)
|
|
h = self.dropout(h)
|
|
pos_cis = self.pos_cis[current_idx:current_idx + seqlen]
|
|
for idx, layer in enumerate(self.layers):
|
|
h = layer(h, pos_cis, kv_cache)
|
|
|
|
h = self.norm(h)
|
|
|
|
if targets is not None:
|
|
logits = self.output(h)
|
|
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
|
else:
|
|
logits = self.output(h[:, [-1], :])
|
|
self.last_loss = None
|
|
|
|
self.OUT.__setitem__('logits', logits)
|
|
self.OUT.__setitem__('last_loss', self.last_loss)
|
|
return self.OUT
|
|
|
|
@torch.inference_mode()
|
|
def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=8, stream=True, rp=1., kv_cache=True):
|
|
|
|
index = idx.shape[1]
|
|
init_inference = True
|
|
while idx.shape[1] < max_new_tokens - 1:
|
|
if init_inference or not kv_cache:
|
|
inference_res, init_inference = self(idx, kv_cache=kv_cache), False
|
|
else:
|
|
inference_res = self(idx[:, -1:], kv_cache=kv_cache, current_idx=idx.shape[1] - 1)
|
|
|
|
logits = inference_res.logits
|
|
logits = logits[:, -1, :]
|
|
|
|
for token in set(idx.tolist()[0]):
|
|
logits[:, token] /= rp
|
|
|
|
if temperature == 0.0:
|
|
_, idx_next = torch.topk(logits, k=1, dim=-1)
|
|
else:
|
|
logits = logits / temperature
|
|
if top_k is not None:
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
logits[logits < v[:, [-1]]] = -float('Inf')
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
idx_next = torch.multinomial(probs, num_samples=1, generator=None)
|
|
|
|
if idx_next == eos:
|
|
break
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
|
if stream:
|
|
yield idx[:, index:]
|
|
|
|
if not stream:
|
|
yield idx[:, index:]
|
|
|
|
@torch.inference_mode()
|
|
def eval_answer(self, idx):
|
|
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
|
|
inference_res = self(idx_cond)
|
|
logits = inference_res.logits
|
|
logits = logits[:, -1, :]
|
|
return logits
|
|
|