xlm-roberta-flash-implementation / configuration_xlm_roberta.py
gmastrapas's picture
feat: expose configuration of use_reentrant
5b03f30
raw
history blame
6.38 kB
from typing import Any, Dict, List, Optional, Union
import torch
from transformers import PretrainedConfig
class XLMRobertaFlashConfig(PretrainedConfig):
def __init__(
self,
vocab_size: int = 250002,
hidden_size: int = 1024,
num_hidden_layers: int = 24,
num_attention_heads: int = 16,
intermediate_size: int = 4096,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 8194,
type_vocab_size: int = 1,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-05,
pad_token_id: int = 1,
bos_token_id: int = 0,
eos_token_id: int = 2,
position_embedding_type: str = "rotary",
rotary_emb_base: float = 10000.0,
use_cache: bool = True,
use_reentrant: bool = False,
classifier_dropout: Optional[float] = None,
lora_adaptations: Optional[List[str]] = None,
lora_prompts: Optional[Dict[str, str]] = None,
lora_rank: int = 4,
lora_dropout_p: float = 0.0,
lora_alpha: int = 1,
lora_main_params_trainable: bool = False,
load_trained_adapters: bool = False,
use_flash_attn: bool = True,
torch_dtype: Optional[Union[str, torch.dtype]] = None,
emb_pooler: Optional[str] = None,
matryoshka_dimensions: Optional[List[int]] = None,
truncate_dim: Optional[int] = None,
**kwargs: Dict[str, Any],
):
"""
Initialize the XLMRobertaFlashConfig configuration.
Args:
vocab_size (int): Size of the vocabulary.
hidden_size (int): Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (int): Number of hidden layers in the Transformer encoder.
num_attention_heads (int): Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (int): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer.
hidden_act (str): The activation function to use.
hidden_dropout_prob (float): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (float): The dropout ratio for the attention probabilities.
max_position_embeddings (int): The maximum length of the position embeddings.
type_vocab_size (int): The vocabulary size of the token type ids.
initializer_range (float): The standard deviation for initializing all weight matrices.
layer_norm_eps (float): The epsilon used by the layer normalization layers.
pad_token_id (int): The ID of the padding token.
bos_token_id (int): The ID of the beginning-of-sequence token.
eos_token_id (int): The ID of the end-of-sequence token.
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
rotary_emb_base (float): Base for rotary embeddings.
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
use_reentrant (bool): Whether or not the model should enable the 'use_reentrant' flag in gradient checkpointing.
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
lora_rank (int): Rank for LoRA adaptations.
lora_dropout_p (float): Dropout probability for LoRA adaptations.
lora_alpha (int): Alpha parameter for LoRA.
lora_main_params_trainable (bool): Whether to make the main model parameters trainable when using LoRA.
load_trained_adapters (bool): Whether to load trained adapters.
use_flash_attn (bool): Whether to use FlashAttention.
torch_dtype (Optional[Union[str, torch.dtype]]): Data type for the tensors.
emb_pooler (Optional[str]): Pooling layer configuration.
matryoshka_dimensions (Optional[List[int]]): Configuration for matryoshka dimension reduction.
truncate_dim (Optional[int]): Dimension to truncate embeddings to, if any.
**kwargs (Dict[str, Any]): Additional keyword arguments passed to the configuration.
"""
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.rotary_emb_base = rotary_emb_base
self.use_cache = use_cache
self.use_reentrant = use_reentrant
self.classifier_dropout = classifier_dropout
self.load_trained_adapters = load_trained_adapters
self.lora_adaptations = lora_adaptations
self.lora_prompts = lora_prompts
self.lora_rank = lora_rank
self.lora_dropout_p = lora_dropout_p
self.lora_alpha = lora_alpha
self.lora_main_params_trainable = lora_main_params_trainable
self.use_flash_attn = use_flash_attn
self.emb_pooler = emb_pooler
self.matryoshka_dimensions = matryoshka_dimensions
self.truncate_dim = truncate_dim
if (
torch_dtype
and hasattr(torch, torch_dtype)
and type(getattr(torch, torch_dtype)) is torch.dtype
):
self.torch_dtype = getattr(torch, torch_dtype)
else:
self.torch_dtype = torch_dtype