|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input, indices): |
|
ctx.save_for_backward(indices) |
|
assert input.ndim >= 2 |
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] |
|
second_dim = other_shape.numel() |
|
|
|
|
|
return torch.gather( |
|
rearrange(input, "b ... -> b (...)"), |
|
0, |
|
repeat(indices, "z -> z d", d=second_dim), |
|
).reshape(-1, *other_shape) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
(indices,) = ctx.saved_tensors |
|
assert grad_output.ndim >= 2 |
|
other_shape = grad_output.shape[1:] |
|
grad_output = rearrange(grad_output, "b ... -> b (...)") |
|
grad_input = torch.zeros( |
|
[ctx.first_axis_dim, grad_output.shape[1]], |
|
device=grad_output.device, |
|
dtype=grad_output.dtype, |
|
) |
|
|
|
|
|
grad_input.scatter_( |
|
0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output |
|
) |
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None |
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply |
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, values, indices, first_axis_dim): |
|
ctx.save_for_backward(indices) |
|
assert indices.ndim == 1 |
|
assert values.ndim >= 2 |
|
output = torch.zeros( |
|
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype |
|
) |
|
|
|
output[indices] = values |
|
|
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
(indices,) = ctx.saved_tensors |
|
|
|
grad_values = grad_output[indices] |
|
|
|
return grad_values, None, None |
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply |
|
|
|
|
|
class IndexFirstAxisResidual(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input, indices): |
|
ctx.save_for_backward(indices) |
|
assert input.ndim >= 2 |
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] |
|
second_dim = other_shape.numel() |
|
|
|
output = input[indices] |
|
|
|
|
|
|
|
return output, input.detach() |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output, grad_residual): |
|
(indices,) = ctx.saved_tensors |
|
assert grad_output.ndim >= 2 |
|
other_shape = grad_output.shape[1:] |
|
assert grad_residual.shape[1:] == other_shape |
|
grad_input = grad_residual |
|
|
|
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1))) |
|
indices = indices.expand_as(grad_output) |
|
grad_input.scatter_add_(0, indices, grad_output) |
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None |
|
|
|
|
|
index_first_axis_residual = IndexFirstAxisResidual.apply |
|
|
|
|
|
def unpad_input(hidden_states, attention_mask): |
|
""" |
|
Arguments: |
|
hidden_states: (batch, seqlen, ...) |
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. |
|
Return: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. |
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. |
|
max_seqlen_in_batch: int |
|
""" |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad( |
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return ( |
|
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length): |
|
""" |
|
Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model). |
|
The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286). |
|
|
|
For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: |
|
``` |
|
[ |
|
[2, 3, 0, 0, 0, 0], |
|
[3, 2, 0, 0, 0, 0], |
|
[6, 0, 0, 0, 0, 0] |
|
] |
|
``` |
|
, which refers to the 3D-attention mask: |
|
``` |
|
[ |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[0, 0, 1, 0, 0, 0], |
|
[0, 0, 1, 1, 0, 0], |
|
[0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[0, 0, 0, 1, 0, 0], |
|
[0, 0, 0, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 1] |
|
], |
|
[ |
|
[1, 0, 0, 0, 0, 0], |
|
[1, 1, 0, 0, 0, 0], |
|
[1, 1, 1, 0, 0, 0], |
|
[1, 1, 1, 1, 0, 0], |
|
[1, 1, 1, 1, 1, 0], |
|
[1, 1, 1, 1, 1, 1] |
|
] |
|
] |
|
```. |
|
|
|
Arguments: |
|
hidden_states: (batch, seqlen, ...) |
|
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. |
|
Return: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. |
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. |
|
max_seqlen_in_batch: int |
|
""" |
|
length = attention_mask_in_length.sum(dim=-1) |
|
seqlen = attention_mask_in_length.size(-1) |
|
attention_mask_2d = torch.arange( |
|
seqlen, device=length.device, dtype=length.dtype |
|
).expand(len(length), seqlen) < length.unsqueeze(1) |
|
real_indices_idx = torch.nonzero( |
|
attention_mask_in_length.flatten(), as_tuple=False |
|
).flatten() |
|
seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx] |
|
indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad( |
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
return ( |
|
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def pad_input(hidden_states, indices, batch, seqlen): |
|
""" |
|
Arguments: |
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. |
|
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. |
|
batch: int, batch size for the padded sequence. |
|
seqlen: int, maximum sequence length for the padded sequence. |
|
Return: |
|
hidden_states: (batch, seqlen, ...) |
|
""" |
|
dim = hidden_states.shape[-1] |
|
|
|
|
|
output = index_put_first_axis(hidden_states, indices, batch * seqlen) |
|
return rearrange(output, "(b s) ... -> b s ...", b=batch) |
|
|