Jackmin801
commited on
Commit
·
c3b584d
1
Parent(s):
6f3de15
use tri daos version with backprop
Browse files- flash_attn_triton.py +928 -169
flash_attn_triton.py
CHANGED
@@ -1,20 +1,11 @@
|
|
1 |
-
"""
|
2 |
-
|
3 |
-
# Copyright (c) 2022, Tri Dao.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
|
17 |
*Experimental* implementation of FlashAttention in Triton.
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
19 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
20 |
|
@@ -30,47 +21,47 @@ Changes:
|
|
30 |
small batch size * nheads.
|
31 |
|
32 |
Caution:
|
|
|
|
|
|
|
33 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
34 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
35 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
36 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
37 |
that there are none left for other head dimensions.
|
|
|
38 |
Differences between this Triton version and the CUDA version:
|
39 |
- Triton version doesn't support dropout.
|
40 |
-
- Triton forward is generally faster than CUDA forward
|
41 |
-
|
42 |
-
|
43 |
-
- Triton version doesn't
|
|
|
44 |
"""
|
45 |
|
46 |
import math
|
47 |
|
48 |
import torch
|
49 |
-
import triton
|
50 |
-
import triton.language as tl
|
51 |
-
from einops import repeat
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
|
71 |
-
'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
|
72 |
-
'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
|
73 |
-
})
|
74 |
@triton.jit
|
75 |
def _fwd_kernel(
|
76 |
Q,
|
@@ -81,11 +72,21 @@ def _fwd_kernel(
|
|
81 |
Lse,
|
82 |
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
83 |
softmax_scale,
|
84 |
-
stride_qb,
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
nheads,
|
90 |
seqlen_q,
|
91 |
seqlen_k,
|
@@ -117,23 +118,28 @@ def _fwd_kernel(
|
|
117 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
118 |
# https://github.com/openai/triton/issues/741
|
119 |
# I'm seeing a tiny bit of difference (5-7us)
|
120 |
-
q_ptrs =
|
121 |
-
offs_m[:, None] * stride_qm + offs_d[None, :])
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
128 |
-
elif BIAS_TYPE ==
|
129 |
-
b_ptrs =
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
# initialize pointer to m and l
|
134 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
135 |
-
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
136 |
-
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
137 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
138 |
# load q: it will stay in SRAM throughout
|
139 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
@@ -147,13 +153,11 @@ def _fwd_kernel(
|
|
147 |
if EVEN_HEADDIM:
|
148 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
149 |
else:
|
150 |
-
q = tl.load(
|
151 |
-
|
152 |
-
|
153 |
-
other=0.0)
|
154 |
# loop over k, v and update accumulator
|
155 |
-
end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
|
156 |
-
(start_m + 1) * BLOCK_M, seqlen_k)
|
157 |
for start_n in range(0, end_n, BLOCK_N):
|
158 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
159 |
# -- compute qk ----
|
@@ -161,48 +165,46 @@ def _fwd_kernel(
|
|
161 |
if EVEN_HEADDIM:
|
162 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
163 |
else:
|
164 |
-
k = tl.load(k_ptrs + start_n * stride_kn,
|
165 |
-
mask=offs_d[None, :] < headdim,
|
166 |
-
other=0.0)
|
167 |
else:
|
168 |
if EVEN_HEADDIM:
|
169 |
-
k = tl.load(
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
else:
|
173 |
-
k = tl.load(
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
177 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
178 |
qk += tl.dot(q, k, trans_b=True)
|
179 |
# Trying to combine the two masks seem to make the result wrong
|
180 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
181 |
-
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
|
182 |
-
float('-inf'))
|
183 |
if IS_CAUSAL:
|
184 |
-
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
|
185 |
-
|
186 |
-
|
187 |
-
if BIAS_TYPE == 'vector':
|
188 |
if EVEN_N:
|
189 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
190 |
else:
|
191 |
-
bias = tl.load(
|
192 |
-
|
193 |
-
|
194 |
bias = bias[None, :]
|
195 |
-
elif BIAS_TYPE ==
|
196 |
if EVEN_M & EVEN_N:
|
197 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
198 |
else:
|
199 |
-
bias = tl.load(
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
206 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
207 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
208 |
# to multiply with softmax_scale here.
|
@@ -227,19 +229,20 @@ def _fwd_kernel(
|
|
227 |
if EVEN_HEADDIM:
|
228 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
229 |
else:
|
230 |
-
v = tl.load(v_ptrs + start_n * stride_vn,
|
231 |
-
mask=offs_d[None, :] < headdim,
|
232 |
-
other=0.0)
|
233 |
else:
|
234 |
if EVEN_HEADDIM:
|
235 |
-
v = tl.load(
|
236 |
-
|
237 |
-
|
|
|
|
|
238 |
else:
|
239 |
-
v = tl.load(
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
243 |
p = p.to(v.dtype)
|
244 |
acc_o += tl.dot(p, v)
|
245 |
|
@@ -260,9 +263,13 @@ def _fwd_kernel(
|
|
260 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
261 |
tl.store(lse_ptrs, lse_i)
|
262 |
# initialize pointers to output
|
263 |
-
|
264 |
-
out_ptrs =
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
if EVEN_M:
|
267 |
if EVEN_HEADDIM:
|
268 |
tl.store(out_ptrs, acc_o)
|
@@ -272,29 +279,550 @@ def _fwd_kernel(
|
|
272 |
if EVEN_HEADDIM:
|
273 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
274 |
else:
|
275 |
-
tl.store(
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def init_to_zero(name):
|
281 |
return lambda nargs: nargs[name].zero_()
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
284 |
# shape constraints
|
285 |
batch, seqlen_q, nheads, d = q.shape
|
286 |
_, seqlen_k, _, _ = k.shape
|
287 |
assert k.shape == (batch, seqlen_k, nheads, d)
|
288 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
289 |
-
assert d <= 128,
|
290 |
-
assert q.dtype == k.dtype == v.dtype,
|
291 |
-
assert q.dtype in [torch.float16,
|
292 |
-
torch.bfloat16], 'Only support fp16 and bf16'
|
293 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
294 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
295 |
|
296 |
has_bias = bias is not None
|
297 |
-
bias_type =
|
298 |
if has_bias:
|
299 |
assert bias.dtype in [q.dtype, torch.float]
|
300 |
assert bias.is_cuda
|
@@ -302,40 +830,26 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
302 |
if bias.stride(-1) != 1:
|
303 |
bias = bias.contiguous()
|
304 |
if bias.shape[2:] == (1, seqlen_k):
|
305 |
-
bias_type =
|
306 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
307 |
-
bias_type =
|
308 |
else:
|
309 |
-
raise RuntimeError(
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
315 |
-
elif bias.shape[:2] == (1, 1):
|
316 |
-
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
317 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
318 |
-
assert bias.shape[:2] == (
|
319 |
-
batch, nheads
|
320 |
-
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
321 |
-
assert bias is not None # for type checking
|
322 |
-
bias_strides = (bias.stride(0), bias.stride(1),
|
323 |
-
bias.stride(2)) if has_bias else (0, 0, 0)
|
324 |
|
325 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
326 |
-
lse = torch.empty((batch, nheads, seqlen_q_rounded),
|
327 |
-
|
328 |
-
dtype=torch.float32)
|
329 |
-
tmp = torch.empty((batch, nheads, seqlen_q_rounded),
|
330 |
-
device=q.device,
|
331 |
-
dtype=torch.float32)
|
332 |
o = torch.empty_like(q)
|
333 |
|
334 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
335 |
-
|
336 |
-
|
337 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
338 |
-
_fwd_kernel[grid](
|
339 |
q,
|
340 |
k,
|
341 |
v,
|
@@ -344,11 +858,138 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
344 |
lse,
|
345 |
tmp,
|
346 |
softmax_scale,
|
347 |
-
q.stride(0),
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
*bias_strides,
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
nheads,
|
353 |
seqlen_q,
|
354 |
seqlen_k,
|
@@ -361,41 +1002,159 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
361 |
bias_type,
|
362 |
causal,
|
363 |
BLOCK_HEADDIM,
|
364 |
-
#
|
|
|
365 |
# num_warps=num_warps,
|
366 |
# num_stages=1,
|
367 |
)
|
368 |
-
|
369 |
|
370 |
-
class _FlashAttnFunc(torch.autograd.Function):
|
371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
@staticmethod
|
373 |
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
374 |
-
"""
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
v: (batch_size, seqlen_k, nheads, headdim)
|
381 |
-
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
382 |
-
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
383 |
-
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
384 |
-
causal (bool): whether to incorporate causal attention masking
|
385 |
-
softmax_scale (float, optional): scale factor for softmax
|
386 |
"""
|
387 |
# Make sure that the last dimension is contiguous
|
388 |
-
q, k, v = [
|
389 |
-
x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
|
390 |
-
]
|
391 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
392 |
-
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
|
|
393 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
394 |
ctx.causal = causal
|
395 |
return o
|
396 |
|
397 |
@staticmethod
|
398 |
def backward(ctx, do):
|
399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
-
flash_attn_func =
|
|
|
1 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
*Experimental* implementation of FlashAttention in Triton.
|
3 |
+
Tested with triton==2.0.0.dev20221202.
|
4 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
5 |
+
other than 64:
|
6 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
7 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
8 |
+
|
9 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
10 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
11 |
|
|
|
21 |
small batch size * nheads.
|
22 |
|
23 |
Caution:
|
24 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
25 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
26 |
+
- This implementation has only been tested on A100.
|
27 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
28 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
29 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
30 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
31 |
that there are none left for other head dimensions.
|
32 |
+
|
33 |
Differences between this Triton version and the CUDA version:
|
34 |
- Triton version doesn't support dropout.
|
35 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
36 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
37 |
+
than CUDA forward + backward.
|
38 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
39 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
40 |
"""
|
41 |
|
42 |
import math
|
43 |
|
44 |
import torch
|
45 |
+
import triton
|
46 |
+
import triton.language as tl
|
|
|
47 |
|
48 |
|
49 |
+
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
50 |
+
# @triton.autotune(
|
51 |
+
# configs=[
|
52 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
53 |
+
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
54 |
+
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
55 |
+
# ],
|
56 |
+
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
57 |
+
# )
|
58 |
+
@triton.heuristics(
|
59 |
+
{
|
60 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
61 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
62 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
63 |
+
}
|
64 |
+
)
|
|
|
|
|
|
|
|
|
65 |
@triton.jit
|
66 |
def _fwd_kernel(
|
67 |
Q,
|
|
|
72 |
Lse,
|
73 |
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
74 |
softmax_scale,
|
75 |
+
stride_qb,
|
76 |
+
stride_qh,
|
77 |
+
stride_qm,
|
78 |
+
stride_kb,
|
79 |
+
stride_kh,
|
80 |
+
stride_kn,
|
81 |
+
stride_vb,
|
82 |
+
stride_vh,
|
83 |
+
stride_vn,
|
84 |
+
stride_bb,
|
85 |
+
stride_bh,
|
86 |
+
stride_bm,
|
87 |
+
stride_ob,
|
88 |
+
stride_oh,
|
89 |
+
stride_om,
|
90 |
nheads,
|
91 |
seqlen_q,
|
92 |
seqlen_k,
|
|
|
118 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
119 |
# https://github.com/openai/triton/issues/741
|
120 |
# I'm seeing a tiny bit of difference (5-7us)
|
121 |
+
q_ptrs = (
|
122 |
+
Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
123 |
+
)
|
124 |
+
k_ptrs = (
|
125 |
+
K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
126 |
+
)
|
127 |
+
v_ptrs = (
|
128 |
+
V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
129 |
+
)
|
130 |
+
if BIAS_TYPE == "vector":
|
131 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
132 |
+
elif BIAS_TYPE == "matrix":
|
133 |
+
b_ptrs = (
|
134 |
+
Bias
|
135 |
+
+ off_b * stride_bb
|
136 |
+
+ off_h * stride_bh
|
137 |
+
+ (offs_m[:, None] * stride_bm + offs_n[None, :])
|
138 |
+
)
|
139 |
# initialize pointer to m and l
|
140 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
141 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
142 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
143 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
144 |
# load q: it will stay in SRAM throughout
|
145 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
|
|
153 |
if EVEN_HEADDIM:
|
154 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
155 |
else:
|
156 |
+
q = tl.load(
|
157 |
+
q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0
|
158 |
+
)
|
|
|
159 |
# loop over k, v and update accumulator
|
160 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
|
|
161 |
for start_n in range(0, end_n, BLOCK_N):
|
162 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
163 |
# -- compute qk ----
|
|
|
165 |
if EVEN_HEADDIM:
|
166 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
167 |
else:
|
168 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
169 |
else:
|
170 |
if EVEN_HEADDIM:
|
171 |
+
k = tl.load(
|
172 |
+
k_ptrs + start_n * stride_kn,
|
173 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
174 |
+
other=0.0,
|
175 |
+
)
|
176 |
else:
|
177 |
+
k = tl.load(
|
178 |
+
k_ptrs + start_n * stride_kn,
|
179 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
180 |
+
other=0.0,
|
181 |
+
)
|
182 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
183 |
qk += tl.dot(q, k, trans_b=True)
|
184 |
# Trying to combine the two masks seem to make the result wrong
|
185 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
186 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
|
|
187 |
if IS_CAUSAL:
|
188 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
189 |
+
if BIAS_TYPE != "none":
|
190 |
+
if BIAS_TYPE == "vector":
|
|
|
191 |
if EVEN_N:
|
192 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
193 |
else:
|
194 |
+
bias = tl.load(
|
195 |
+
b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0
|
196 |
+
).to(tl.float32)
|
197 |
bias = bias[None, :]
|
198 |
+
elif BIAS_TYPE == "matrix":
|
199 |
if EVEN_M & EVEN_N:
|
200 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
201 |
else:
|
202 |
+
bias = tl.load(
|
203 |
+
b_ptrs + start_n,
|
204 |
+
mask=(offs_m[:, None] < seqlen_q)
|
205 |
+
& ((start_n + offs_n)[None, :] < seqlen_k),
|
206 |
+
other=0.0,
|
207 |
+
).to(tl.float32)
|
|
|
208 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
209 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
210 |
# to multiply with softmax_scale here.
|
|
|
229 |
if EVEN_HEADDIM:
|
230 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
231 |
else:
|
232 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
233 |
else:
|
234 |
if EVEN_HEADDIM:
|
235 |
+
v = tl.load(
|
236 |
+
v_ptrs + start_n * stride_vn,
|
237 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
238 |
+
other=0.0,
|
239 |
+
)
|
240 |
else:
|
241 |
+
v = tl.load(
|
242 |
+
v_ptrs + start_n * stride_vn,
|
243 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
244 |
+
other=0.0,
|
245 |
+
)
|
246 |
p = p.to(v.dtype)
|
247 |
acc_o += tl.dot(p, v)
|
248 |
|
|
|
263 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
264 |
tl.store(lse_ptrs, lse_i)
|
265 |
# initialize pointers to output
|
266 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
267 |
+
out_ptrs = (
|
268 |
+
Out
|
269 |
+
+ off_b * stride_ob
|
270 |
+
+ off_h * stride_oh
|
271 |
+
+ (offs_m[:, None] * stride_om + offs_d[None, :])
|
272 |
+
)
|
273 |
if EVEN_M:
|
274 |
if EVEN_HEADDIM:
|
275 |
tl.store(out_ptrs, acc_o)
|
|
|
279 |
if EVEN_HEADDIM:
|
280 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
281 |
else:
|
282 |
+
tl.store(
|
283 |
+
out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
284 |
+
)
|
285 |
+
|
286 |
+
|
287 |
+
@triton.jit
|
288 |
+
def _bwd_preprocess_do_o_dot(
|
289 |
+
Out,
|
290 |
+
DO,
|
291 |
+
Delta,
|
292 |
+
stride_ob,
|
293 |
+
stride_oh,
|
294 |
+
stride_om,
|
295 |
+
stride_dob,
|
296 |
+
stride_doh,
|
297 |
+
stride_dom,
|
298 |
+
nheads,
|
299 |
+
seqlen_q,
|
300 |
+
seqlen_q_rounded,
|
301 |
+
headdim,
|
302 |
+
BLOCK_M: tl.constexpr,
|
303 |
+
BLOCK_HEADDIM: tl.constexpr,
|
304 |
+
):
|
305 |
+
start_m = tl.program_id(0)
|
306 |
+
off_hb = tl.program_id(1)
|
307 |
+
off_b = off_hb // nheads
|
308 |
+
off_h = off_hb % nheads
|
309 |
+
# initialize offsets
|
310 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
311 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
312 |
+
# load
|
313 |
+
o = tl.load(
|
314 |
+
Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
|
315 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
316 |
+
other=0.0,
|
317 |
+
).to(tl.float32)
|
318 |
+
do = tl.load(
|
319 |
+
DO
|
320 |
+
+ off_b * stride_dob
|
321 |
+
+ off_h * stride_doh
|
322 |
+
+ offs_m[:, None] * stride_dom
|
323 |
+
+ offs_d[None, :],
|
324 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
325 |
+
other=0.0,
|
326 |
+
).to(tl.float32)
|
327 |
+
delta = tl.sum(o * do, axis=1)
|
328 |
+
# write-back
|
329 |
+
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
330 |
+
|
331 |
+
|
332 |
+
@triton.jit
|
333 |
+
def _bwd_store_dk_dv(
|
334 |
+
dk_ptrs,
|
335 |
+
dv_ptrs,
|
336 |
+
dk,
|
337 |
+
dv,
|
338 |
+
offs_n,
|
339 |
+
offs_d,
|
340 |
+
seqlen_k,
|
341 |
+
headdim,
|
342 |
+
EVEN_M: tl.constexpr,
|
343 |
+
EVEN_N: tl.constexpr,
|
344 |
+
EVEN_HEADDIM: tl.constexpr,
|
345 |
+
):
|
346 |
+
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
|
347 |
+
# if we just call tl.store(dv_ptrs), there's a race condition
|
348 |
+
if EVEN_N & EVEN_M:
|
349 |
+
if EVEN_HEADDIM:
|
350 |
+
tl.store(dv_ptrs, dv)
|
351 |
+
tl.store(dk_ptrs, dk)
|
352 |
+
else:
|
353 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
354 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
355 |
+
else:
|
356 |
+
if EVEN_HEADDIM:
|
357 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
358 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
359 |
+
else:
|
360 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
361 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
362 |
+
|
363 |
+
|
364 |
+
@triton.jit
|
365 |
+
def _bwd_kernel_one_col_block(
|
366 |
+
start_n,
|
367 |
+
Q,
|
368 |
+
K,
|
369 |
+
V,
|
370 |
+
Bias,
|
371 |
+
DO,
|
372 |
+
DQ,
|
373 |
+
DK,
|
374 |
+
DV,
|
375 |
+
LSE,
|
376 |
+
D,
|
377 |
+
softmax_scale,
|
378 |
+
stride_qm,
|
379 |
+
stride_kn,
|
380 |
+
stride_vn,
|
381 |
+
stride_bm,
|
382 |
+
stride_dom,
|
383 |
+
stride_dqm,
|
384 |
+
stride_dkn,
|
385 |
+
stride_dvn,
|
386 |
+
seqlen_q,
|
387 |
+
seqlen_k,
|
388 |
+
headdim,
|
389 |
+
ATOMIC_ADD: tl.constexpr,
|
390 |
+
BIAS_TYPE: tl.constexpr,
|
391 |
+
IS_CAUSAL: tl.constexpr,
|
392 |
+
BLOCK_HEADDIM: tl.constexpr,
|
393 |
+
EVEN_M: tl.constexpr,
|
394 |
+
EVEN_N: tl.constexpr,
|
395 |
+
EVEN_HEADDIM: tl.constexpr,
|
396 |
+
BLOCK_M: tl.constexpr,
|
397 |
+
BLOCK_N: tl.constexpr,
|
398 |
+
):
|
399 |
+
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
400 |
+
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
401 |
+
# initialize row/col offsets
|
402 |
+
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
403 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
404 |
+
offs_m = tl.arange(0, BLOCK_M)
|
405 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
406 |
+
# initialize pointers to value-like data
|
407 |
+
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
408 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
409 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
410 |
+
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
411 |
+
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
412 |
+
if BIAS_TYPE == "vector":
|
413 |
+
b_ptrs = Bias + offs_n
|
414 |
+
elif BIAS_TYPE == "matrix":
|
415 |
+
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
416 |
+
# initialize dv and dk
|
417 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
418 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
419 |
+
# There seems to be some problem with Triton pipelining that makes results wrong for
|
420 |
+
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
|
421 |
+
# may have zero step, and pipelining with the bias matrix could screw it up.
|
422 |
+
# So we just exit early.
|
423 |
+
if begin_m >= seqlen_q:
|
424 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
425 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
426 |
+
_bwd_store_dk_dv(
|
427 |
+
dk_ptrs,
|
428 |
+
dv_ptrs,
|
429 |
+
dk,
|
430 |
+
dv,
|
431 |
+
offs_n,
|
432 |
+
offs_d,
|
433 |
+
seqlen_k,
|
434 |
+
headdim,
|
435 |
+
EVEN_M=EVEN_M,
|
436 |
+
EVEN_N=EVEN_N,
|
437 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
438 |
+
)
|
439 |
+
return
|
440 |
+
# k and v stay in SRAM throughout
|
441 |
+
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
442 |
+
# if we just call tl.load(k_ptrs), we get the wrong output!
|
443 |
+
if EVEN_N & EVEN_M:
|
444 |
+
if EVEN_HEADDIM:
|
445 |
+
k = tl.load(k_ptrs)
|
446 |
+
v = tl.load(v_ptrs)
|
447 |
+
else:
|
448 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
449 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
450 |
+
else:
|
451 |
+
if EVEN_HEADDIM:
|
452 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
453 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
454 |
+
else:
|
455 |
+
k = tl.load(
|
456 |
+
k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
457 |
+
)
|
458 |
+
v = tl.load(
|
459 |
+
v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
460 |
+
)
|
461 |
+
# loop over rows
|
462 |
+
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
463 |
+
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
464 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
465 |
+
offs_m_curr = start_m + offs_m
|
466 |
+
# load q, k, v, do on-chip
|
467 |
+
# Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
|
468 |
+
if EVEN_M & EVEN_HEADDIM:
|
469 |
+
q = tl.load(q_ptrs)
|
470 |
+
else:
|
471 |
+
if EVEN_HEADDIM:
|
472 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
473 |
+
else:
|
474 |
+
q = tl.load(
|
475 |
+
q_ptrs,
|
476 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
477 |
+
other=0.0,
|
478 |
+
)
|
479 |
+
# recompute p = softmax(qk, dim=-1).T
|
480 |
+
qk = tl.dot(q, k, trans_b=True)
|
481 |
+
# Trying to combine the two masks seem to make the result wrong
|
482 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
483 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
484 |
+
if IS_CAUSAL:
|
485 |
+
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
486 |
+
if BIAS_TYPE != "none":
|
487 |
+
tl.debug_barrier() # Race condition otherwise
|
488 |
+
if BIAS_TYPE == "vector":
|
489 |
+
if EVEN_N:
|
490 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
491 |
+
else:
|
492 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
493 |
+
bias = bias[None, :]
|
494 |
+
elif BIAS_TYPE == "matrix":
|
495 |
+
if EVEN_M & EVEN_N:
|
496 |
+
bias = tl.load(b_ptrs).to(tl.float32)
|
497 |
+
else:
|
498 |
+
bias = tl.load(
|
499 |
+
b_ptrs,
|
500 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k),
|
501 |
+
other=0.0,
|
502 |
+
).to(tl.float32)
|
503 |
+
qk = qk * softmax_scale + bias
|
504 |
+
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
505 |
+
# Also wrong for headdim=64.
|
506 |
+
if not (EVEN_M & EVEN_HEADDIM):
|
507 |
+
tl.debug_barrier()
|
508 |
+
lse_i = tl.load(LSE + offs_m_curr)
|
509 |
+
if BIAS_TYPE == "none":
|
510 |
+
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
511 |
+
else:
|
512 |
+
p = tl.exp(qk - lse_i[:, None])
|
513 |
+
# compute dv
|
514 |
+
# [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
|
515 |
+
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
|
516 |
+
# in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
|
517 |
+
# the output is correct.
|
518 |
+
if EVEN_M & EVEN_HEADDIM:
|
519 |
+
do = tl.load(do_ptrs)
|
520 |
+
else:
|
521 |
+
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
522 |
+
do = tl.load(
|
523 |
+
do_ptrs,
|
524 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
525 |
+
other=0.0,
|
526 |
+
)
|
527 |
+
# if EVEN_M:
|
528 |
+
# if EVEN_HEADDIM:
|
529 |
+
# do = tl.load(do_ptrs)
|
530 |
+
# else:
|
531 |
+
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
532 |
+
# else:
|
533 |
+
# if EVEN_HEADDIM:
|
534 |
+
# do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
535 |
+
# else:
|
536 |
+
# do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
537 |
+
# & (offs_d[None, :] < headdim), other=0.0)
|
538 |
+
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
539 |
+
# compute dp = dot(v, do)
|
540 |
+
# There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
|
541 |
+
# Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
|
542 |
+
# Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
|
543 |
+
if not (EVEN_M & EVEN_HEADDIM):
|
544 |
+
tl.debug_barrier()
|
545 |
+
dp = tl.dot(do, v, trans_b=True)
|
546 |
+
# There's a race condition for headdim=48
|
547 |
+
if not EVEN_HEADDIM:
|
548 |
+
tl.debug_barrier()
|
549 |
+
# compute ds = p * (dp - delta[:, None])
|
550 |
+
# Putting the subtraction after the dp matmul (instead of before) is slightly faster
|
551 |
+
Di = tl.load(D + offs_m_curr)
|
552 |
+
# Converting ds to q.dtype here reduces register pressure and makes it much faster
|
553 |
+
# for BLOCK_HEADDIM=128
|
554 |
+
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
555 |
+
# compute dk = dot(ds.T, q)
|
556 |
+
dk += tl.dot(ds, q, trans_a=True)
|
557 |
+
# compute dq
|
558 |
+
if not (
|
559 |
+
EVEN_M & EVEN_HEADDIM
|
560 |
+
): # Otherewise there's a race condition when BIAS_TYPE='matrix'
|
561 |
+
tl.debug_barrier()
|
562 |
+
if not ATOMIC_ADD:
|
563 |
+
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
564 |
+
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
565 |
+
dq += tl.dot(ds, k)
|
566 |
+
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
567 |
+
else:
|
568 |
+
if EVEN_HEADDIM:
|
569 |
+
dq = tl.load(
|
570 |
+
dq_ptrs,
|
571 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
572 |
+
other=0.0,
|
573 |
+
eviction_policy="evict_last",
|
574 |
+
)
|
575 |
+
dq += tl.dot(ds, k)
|
576 |
+
tl.store(
|
577 |
+
dq_ptrs,
|
578 |
+
dq,
|
579 |
+
mask=offs_m_curr[:, None] < seqlen_q,
|
580 |
+
eviction_policy="evict_last",
|
581 |
+
)
|
582 |
+
else:
|
583 |
+
dq = tl.load(
|
584 |
+
dq_ptrs,
|
585 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
586 |
+
other=0.0,
|
587 |
+
eviction_policy="evict_last",
|
588 |
+
)
|
589 |
+
dq += tl.dot(ds, k)
|
590 |
+
tl.store(
|
591 |
+
dq_ptrs,
|
592 |
+
dq,
|
593 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
594 |
+
eviction_policy="evict_last",
|
595 |
+
)
|
596 |
+
else: # If we're parallelizing across the seqlen_k dimension
|
597 |
+
dq = tl.dot(ds, k)
|
598 |
+
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
599 |
+
tl.atomic_add(dq_ptrs, dq)
|
600 |
+
else:
|
601 |
+
if EVEN_HEADDIM:
|
602 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
603 |
+
else:
|
604 |
+
tl.atomic_add(
|
605 |
+
dq_ptrs,
|
606 |
+
dq,
|
607 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
608 |
+
)
|
609 |
+
# increment pointers
|
610 |
+
dq_ptrs += BLOCK_M * stride_dqm
|
611 |
+
q_ptrs += BLOCK_M * stride_qm
|
612 |
+
do_ptrs += BLOCK_M * stride_dom
|
613 |
+
if BIAS_TYPE == "matrix":
|
614 |
+
b_ptrs += BLOCK_M * stride_bm
|
615 |
+
# write-back
|
616 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
617 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
618 |
+
_bwd_store_dk_dv(
|
619 |
+
dk_ptrs,
|
620 |
+
dv_ptrs,
|
621 |
+
dk,
|
622 |
+
dv,
|
623 |
+
offs_n,
|
624 |
+
offs_d,
|
625 |
+
seqlen_k,
|
626 |
+
headdim,
|
627 |
+
EVEN_M=EVEN_M,
|
628 |
+
EVEN_N=EVEN_N,
|
629 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
630 |
+
)
|
631 |
+
|
632 |
|
633 |
def init_to_zero(name):
|
634 |
return lambda nargs: nargs[name].zero_()
|
635 |
|
636 |
+
|
637 |
+
@triton.autotune(
|
638 |
+
configs=[
|
639 |
+
triton.Config(
|
640 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
|
641 |
+
num_warps=8,
|
642 |
+
num_stages=1,
|
643 |
+
pre_hook=init_to_zero("DQ"),
|
644 |
+
),
|
645 |
+
triton.Config(
|
646 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
|
647 |
+
num_warps=8,
|
648 |
+
num_stages=1,
|
649 |
+
pre_hook=init_to_zero("DQ"),
|
650 |
+
),
|
651 |
+
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
652 |
+
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
653 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
654 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
655 |
+
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
656 |
+
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
657 |
+
],
|
658 |
+
key=["CACHE_KEY_SEQLEN_Q", "CACHE_KEY_SEQLEN_K", "BIAS_TYPE", "IS_CAUSAL", "BLOCK_HEADDIM"],
|
659 |
+
)
|
660 |
+
@triton.heuristics(
|
661 |
+
{
|
662 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
663 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
664 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
665 |
+
}
|
666 |
+
)
|
667 |
+
@triton.jit
|
668 |
+
def _bwd_kernel(
|
669 |
+
Q,
|
670 |
+
K,
|
671 |
+
V,
|
672 |
+
Bias,
|
673 |
+
DO,
|
674 |
+
DQ,
|
675 |
+
DK,
|
676 |
+
DV,
|
677 |
+
LSE,
|
678 |
+
D,
|
679 |
+
softmax_scale,
|
680 |
+
stride_qb,
|
681 |
+
stride_qh,
|
682 |
+
stride_qm,
|
683 |
+
stride_kb,
|
684 |
+
stride_kh,
|
685 |
+
stride_kn,
|
686 |
+
stride_vb,
|
687 |
+
stride_vh,
|
688 |
+
stride_vn,
|
689 |
+
stride_bb,
|
690 |
+
stride_bh,
|
691 |
+
stride_bm,
|
692 |
+
stride_dob,
|
693 |
+
stride_doh,
|
694 |
+
stride_dom,
|
695 |
+
stride_dqb,
|
696 |
+
stride_dqh,
|
697 |
+
stride_dqm,
|
698 |
+
stride_dkb,
|
699 |
+
stride_dkh,
|
700 |
+
stride_dkn,
|
701 |
+
stride_dvb,
|
702 |
+
stride_dvh,
|
703 |
+
stride_dvn,
|
704 |
+
nheads,
|
705 |
+
seqlen_q,
|
706 |
+
seqlen_k,
|
707 |
+
seqlen_q_rounded,
|
708 |
+
headdim,
|
709 |
+
CACHE_KEY_SEQLEN_Q,
|
710 |
+
CACHE_KEY_SEQLEN_K,
|
711 |
+
BIAS_TYPE: tl.constexpr,
|
712 |
+
IS_CAUSAL: tl.constexpr,
|
713 |
+
BLOCK_HEADDIM: tl.constexpr,
|
714 |
+
SEQUENCE_PARALLEL: tl.constexpr,
|
715 |
+
EVEN_M: tl.constexpr,
|
716 |
+
EVEN_N: tl.constexpr,
|
717 |
+
EVEN_HEADDIM: tl.constexpr,
|
718 |
+
BLOCK_M: tl.constexpr,
|
719 |
+
BLOCK_N: tl.constexpr,
|
720 |
+
):
|
721 |
+
off_hb = tl.program_id(1)
|
722 |
+
off_b = off_hb // nheads
|
723 |
+
off_h = off_hb % nheads
|
724 |
+
# offset pointers for batch/head
|
725 |
+
Q += off_b * stride_qb + off_h * stride_qh
|
726 |
+
K += off_b * stride_kb + off_h * stride_kh
|
727 |
+
V += off_b * stride_vb + off_h * stride_vh
|
728 |
+
DO += off_b * stride_dob + off_h * stride_doh
|
729 |
+
DQ += off_b * stride_dqb + off_h * stride_dqh
|
730 |
+
DK += off_b * stride_dkb + off_h * stride_dkh
|
731 |
+
DV += off_b * stride_dvb + off_h * stride_dvh
|
732 |
+
if BIAS_TYPE != "none":
|
733 |
+
Bias += off_b * stride_bb + off_h * stride_bh
|
734 |
+
# pointer to row-wise quantities in value-like data
|
735 |
+
D += off_hb * seqlen_q_rounded
|
736 |
+
LSE += off_hb * seqlen_q_rounded
|
737 |
+
if not SEQUENCE_PARALLEL:
|
738 |
+
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
739 |
+
for start_n in range(0, num_block_n):
|
740 |
+
_bwd_kernel_one_col_block(
|
741 |
+
start_n,
|
742 |
+
Q,
|
743 |
+
K,
|
744 |
+
V,
|
745 |
+
Bias,
|
746 |
+
DO,
|
747 |
+
DQ,
|
748 |
+
DK,
|
749 |
+
DV,
|
750 |
+
LSE,
|
751 |
+
D,
|
752 |
+
softmax_scale,
|
753 |
+
stride_qm,
|
754 |
+
stride_kn,
|
755 |
+
stride_vn,
|
756 |
+
stride_bm,
|
757 |
+
stride_dom,
|
758 |
+
stride_dqm,
|
759 |
+
stride_dkn,
|
760 |
+
stride_dvn,
|
761 |
+
seqlen_q,
|
762 |
+
seqlen_k,
|
763 |
+
headdim,
|
764 |
+
ATOMIC_ADD=False,
|
765 |
+
BIAS_TYPE=BIAS_TYPE,
|
766 |
+
IS_CAUSAL=IS_CAUSAL,
|
767 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
768 |
+
EVEN_M=EVEN_M,
|
769 |
+
EVEN_N=EVEN_N,
|
770 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
771 |
+
BLOCK_M=BLOCK_M,
|
772 |
+
BLOCK_N=BLOCK_N,
|
773 |
+
)
|
774 |
+
else:
|
775 |
+
start_n = tl.program_id(0)
|
776 |
+
_bwd_kernel_one_col_block(
|
777 |
+
start_n,
|
778 |
+
Q,
|
779 |
+
K,
|
780 |
+
V,
|
781 |
+
Bias,
|
782 |
+
DO,
|
783 |
+
DQ,
|
784 |
+
DK,
|
785 |
+
DV,
|
786 |
+
LSE,
|
787 |
+
D,
|
788 |
+
softmax_scale,
|
789 |
+
stride_qm,
|
790 |
+
stride_kn,
|
791 |
+
stride_vn,
|
792 |
+
stride_bm,
|
793 |
+
stride_dom,
|
794 |
+
stride_dqm,
|
795 |
+
stride_dkn,
|
796 |
+
stride_dvn,
|
797 |
+
seqlen_q,
|
798 |
+
seqlen_k,
|
799 |
+
headdim,
|
800 |
+
ATOMIC_ADD=True,
|
801 |
+
BIAS_TYPE=BIAS_TYPE,
|
802 |
+
IS_CAUSAL=IS_CAUSAL,
|
803 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
804 |
+
EVEN_M=EVEN_M,
|
805 |
+
EVEN_N=EVEN_N,
|
806 |
+
EVEN_HEADDIM=EVEN_HEADDIM,
|
807 |
+
BLOCK_M=BLOCK_M,
|
808 |
+
BLOCK_N=BLOCK_N,
|
809 |
+
)
|
810 |
+
|
811 |
+
|
812 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
813 |
# shape constraints
|
814 |
batch, seqlen_q, nheads, d = q.shape
|
815 |
_, seqlen_k, _, _ = k.shape
|
816 |
assert k.shape == (batch, seqlen_k, nheads, d)
|
817 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
818 |
+
assert d <= 128, "FlashAttention only support head dimensions up to 128"
|
819 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
820 |
+
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
|
|
|
821 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
822 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
823 |
|
824 |
has_bias = bias is not None
|
825 |
+
bias_type = "none"
|
826 |
if has_bias:
|
827 |
assert bias.dtype in [q.dtype, torch.float]
|
828 |
assert bias.is_cuda
|
|
|
830 |
if bias.stride(-1) != 1:
|
831 |
bias = bias.contiguous()
|
832 |
if bias.shape[2:] == (1, seqlen_k):
|
833 |
+
bias_type = "vector"
|
834 |
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
835 |
+
bias_type = "matrix"
|
836 |
else:
|
837 |
+
raise RuntimeError(
|
838 |
+
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)"
|
839 |
+
)
|
840 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
841 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
842 |
|
843 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
844 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
845 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
|
|
|
|
|
|
|
|
846 |
o = torch.empty_like(q)
|
847 |
|
848 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
849 |
+
BLOCK = 128
|
850 |
+
num_warps = 4 if d <= 64 else 8
|
851 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
852 |
+
_fwd_kernel[grid](
|
853 |
q,
|
854 |
k,
|
855 |
v,
|
|
|
858 |
lse,
|
859 |
tmp,
|
860 |
softmax_scale,
|
861 |
+
q.stride(0),
|
862 |
+
q.stride(2),
|
863 |
+
q.stride(1),
|
864 |
+
k.stride(0),
|
865 |
+
k.stride(2),
|
866 |
+
k.stride(1),
|
867 |
+
v.stride(0),
|
868 |
+
v.stride(2),
|
869 |
+
v.stride(1),
|
870 |
+
*bias_strides,
|
871 |
+
o.stride(0),
|
872 |
+
o.stride(2),
|
873 |
+
o.stride(1),
|
874 |
+
nheads,
|
875 |
+
seqlen_q,
|
876 |
+
seqlen_k,
|
877 |
+
seqlen_q_rounded,
|
878 |
+
d,
|
879 |
+
seqlen_q // 32,
|
880 |
+
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
881 |
+
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
882 |
+
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
883 |
+
bias_type,
|
884 |
+
causal,
|
885 |
+
BLOCK_HEADDIM,
|
886 |
+
BLOCK_M=BLOCK,
|
887 |
+
BLOCK_N=BLOCK,
|
888 |
+
num_warps=num_warps,
|
889 |
+
num_stages=1,
|
890 |
+
)
|
891 |
+
return o, lse, softmax_scale # softmax_scale could have been updated
|
892 |
+
|
893 |
+
|
894 |
+
def _flash_attn_backward(
|
895 |
+
do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None
|
896 |
+
):
|
897 |
+
# Make sure that the last dimension is contiguous
|
898 |
+
if do.stride(-1) != 1:
|
899 |
+
do = do.contiguous()
|
900 |
+
batch, seqlen_q, nheads, d = q.shape
|
901 |
+
_, seqlen_k, _, _ = k.shape
|
902 |
+
# assert d in {16, 32, 64, 128}
|
903 |
+
assert d <= 128
|
904 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
905 |
+
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
906 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
907 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
908 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
909 |
+
# dq_accum = torch.zeros_like(q, dtype=torch.float32)
|
910 |
+
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
911 |
+
delta = torch.empty_like(lse)
|
912 |
+
# delta = torch.zeros_like(lse)
|
913 |
+
|
914 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
915 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
916 |
+
_bwd_preprocess_do_o_dot[grid](
|
917 |
+
o,
|
918 |
+
do,
|
919 |
+
delta,
|
920 |
+
o.stride(0),
|
921 |
+
o.stride(2),
|
922 |
+
o.stride(1),
|
923 |
+
do.stride(0),
|
924 |
+
do.stride(2),
|
925 |
+
do.stride(1),
|
926 |
+
nheads,
|
927 |
+
seqlen_q,
|
928 |
+
seqlen_q_rounded,
|
929 |
+
d,
|
930 |
+
BLOCK_M=128,
|
931 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
932 |
+
)
|
933 |
+
|
934 |
+
has_bias = bias is not None
|
935 |
+
bias_type = "none"
|
936 |
+
if has_bias:
|
937 |
+
assert bias.dtype in [q.dtype, torch.float]
|
938 |
+
assert bias.is_cuda
|
939 |
+
assert bias.dim() == 4
|
940 |
+
assert bias.stride(-1) == 1
|
941 |
+
if bias.shape[2:] == (1, seqlen_k):
|
942 |
+
bias_type = "vector"
|
943 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
944 |
+
bias_type = "matrix"
|
945 |
+
else:
|
946 |
+
raise RuntimeError(
|
947 |
+
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)"
|
948 |
+
)
|
949 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
950 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
951 |
+
|
952 |
+
# BLOCK_M = 128
|
953 |
+
# BLOCK_N = 64
|
954 |
+
# num_warps = 4
|
955 |
+
grid = lambda META: (
|
956 |
+
triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
|
957 |
+
batch * nheads,
|
958 |
+
)
|
959 |
+
_bwd_kernel[grid](
|
960 |
+
q,
|
961 |
+
k,
|
962 |
+
v,
|
963 |
+
bias,
|
964 |
+
do,
|
965 |
+
dq_accum,
|
966 |
+
dk,
|
967 |
+
dv,
|
968 |
+
lse,
|
969 |
+
delta,
|
970 |
+
softmax_scale,
|
971 |
+
q.stride(0),
|
972 |
+
q.stride(2),
|
973 |
+
q.stride(1),
|
974 |
+
k.stride(0),
|
975 |
+
k.stride(2),
|
976 |
+
k.stride(1),
|
977 |
+
v.stride(0),
|
978 |
+
v.stride(2),
|
979 |
+
v.stride(1),
|
980 |
*bias_strides,
|
981 |
+
do.stride(0),
|
982 |
+
do.stride(2),
|
983 |
+
do.stride(1),
|
984 |
+
dq_accum.stride(0),
|
985 |
+
dq_accum.stride(2),
|
986 |
+
dq_accum.stride(1),
|
987 |
+
dk.stride(0),
|
988 |
+
dk.stride(2),
|
989 |
+
dk.stride(1),
|
990 |
+
dv.stride(0),
|
991 |
+
dv.stride(2),
|
992 |
+
dv.stride(1),
|
993 |
nheads,
|
994 |
seqlen_q,
|
995 |
seqlen_k,
|
|
|
1002 |
bias_type,
|
1003 |
causal,
|
1004 |
BLOCK_HEADDIM,
|
1005 |
+
# SEQUENCE_PARALLEL=False,
|
1006 |
+
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
1007 |
# num_warps=num_warps,
|
1008 |
# num_stages=1,
|
1009 |
)
|
1010 |
+
dq.copy_(dq_accum)
|
1011 |
|
|
|
1012 |
|
1013 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
1014 |
+
@staticmethod
|
1015 |
+
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
1016 |
+
"""
|
1017 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
1018 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
1019 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
1020 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
1021 |
+
"""
|
1022 |
+
# Make sure that the last dimension is contiguous
|
1023 |
+
if qkv.stride(-1) != 1:
|
1024 |
+
qkv = qkv.contiguous()
|
1025 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
1026 |
+
qkv[:, :, 0],
|
1027 |
+
qkv[:, :, 1],
|
1028 |
+
qkv[:, :, 2],
|
1029 |
+
bias=bias,
|
1030 |
+
causal=causal,
|
1031 |
+
softmax_scale=softmax_scale,
|
1032 |
+
)
|
1033 |
+
ctx.save_for_backward(qkv, o, lse, bias)
|
1034 |
+
ctx.causal = causal
|
1035 |
+
return o
|
1036 |
+
|
1037 |
+
@staticmethod
|
1038 |
+
def backward(ctx, do):
|
1039 |
+
qkv, o, lse, bias = ctx.saved_tensors
|
1040 |
+
assert not ctx.needs_input_grad[1], "FlashAttention does not support bias gradient yet"
|
1041 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
1042 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
1043 |
+
with torch.inference_mode():
|
1044 |
+
dqkv = torch.empty_like(qkv)
|
1045 |
+
_flash_attn_backward(
|
1046 |
+
do,
|
1047 |
+
qkv[:, :, 0],
|
1048 |
+
qkv[:, :, 1],
|
1049 |
+
qkv[:, :, 2],
|
1050 |
+
o,
|
1051 |
+
lse,
|
1052 |
+
dqkv[:, :, 0],
|
1053 |
+
dqkv[:, :, 1],
|
1054 |
+
dqkv[:, :, 2],
|
1055 |
+
bias=bias,
|
1056 |
+
causal=ctx.causal,
|
1057 |
+
softmax_scale=ctx.softmax_scale,
|
1058 |
+
)
|
1059 |
+
return dqkv, None, None, None
|
1060 |
+
|
1061 |
+
|
1062 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
1063 |
+
|
1064 |
+
|
1065 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
1066 |
+
@staticmethod
|
1067 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
1068 |
+
"""
|
1069 |
+
q: (batch, seqlen_q, nheads, headdim)
|
1070 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
1071 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
1072 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
1073 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
1074 |
+
"""
|
1075 |
+
# Make sure that the last dimension is contiguous
|
1076 |
+
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
1077 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
1078 |
+
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
|
1079 |
+
)
|
1080 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
1081 |
+
ctx.causal = causal
|
1082 |
+
return o
|
1083 |
+
|
1084 |
+
@staticmethod
|
1085 |
+
def backward(ctx, do):
|
1086 |
+
q, kv, o, lse, bias = ctx.saved_tensors
|
1087 |
+
if len(ctx.needs_input_grad) >= 3:
|
1088 |
+
assert not ctx.needs_input_grad[2], "FlashAttention does not support bias gradient yet"
|
1089 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
1090 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
1091 |
+
with torch.inference_mode():
|
1092 |
+
dq = torch.empty_like(q)
|
1093 |
+
dkv = torch.empty_like(kv)
|
1094 |
+
_flash_attn_backward(
|
1095 |
+
do,
|
1096 |
+
q,
|
1097 |
+
kv[:, :, 0],
|
1098 |
+
kv[:, :, 1],
|
1099 |
+
o,
|
1100 |
+
lse,
|
1101 |
+
dq,
|
1102 |
+
dkv[:, :, 0],
|
1103 |
+
dkv[:, :, 1],
|
1104 |
+
bias=bias,
|
1105 |
+
causal=ctx.causal,
|
1106 |
+
softmax_scale=ctx.softmax_scale,
|
1107 |
+
)
|
1108 |
+
return dq, dkv, None, None, None
|
1109 |
+
|
1110 |
+
|
1111 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
1112 |
+
|
1113 |
+
|
1114 |
+
class FlashAttnFunc(torch.autograd.Function):
|
1115 |
@staticmethod
|
1116 |
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
1117 |
+
"""
|
1118 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
1119 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
1120 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
1121 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
1122 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
1123 |
"""
|
1124 |
# Make sure that the last dimension is contiguous
|
1125 |
+
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
|
|
|
|
1126 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
1127 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
1128 |
+
)
|
1129 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
1130 |
ctx.causal = causal
|
1131 |
return o
|
1132 |
|
1133 |
@staticmethod
|
1134 |
def backward(ctx, do):
|
1135 |
+
q, k, v, o, lse, bias = ctx.saved_tensors
|
1136 |
+
assert not ctx.needs_input_grad[3], "FlashAttention does not support bias gradient yet"
|
1137 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
1138 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
1139 |
+
with torch.inference_mode():
|
1140 |
+
dq = torch.empty_like(q)
|
1141 |
+
dk = torch.empty_like(k)
|
1142 |
+
dv = torch.empty_like(v)
|
1143 |
+
_flash_attn_backward(
|
1144 |
+
do,
|
1145 |
+
q,
|
1146 |
+
k,
|
1147 |
+
v,
|
1148 |
+
o,
|
1149 |
+
lse,
|
1150 |
+
dq,
|
1151 |
+
dk,
|
1152 |
+
dv,
|
1153 |
+
bias=bias,
|
1154 |
+
causal=ctx.causal,
|
1155 |
+
softmax_scale=ctx.softmax_scale,
|
1156 |
+
)
|
1157 |
+
return dq, dk, dv, None, None, None
|
1158 |
+
|
1159 |
|
1160 |
+
flash_attn_func = FlashAttnFunc.apply
|