Jackmin801
commited on
Commit
·
4f24e0f
1
Parent(s):
33026dc
old flash attn
Browse files- flash_attn_triton.py +424 -0
- modeling_bert.py +11 -0
flash_attn_triton.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Triton implementation of Flash Attention.
|
2 |
+
|
3 |
+
# Copyright (c) 2022, Tri Dao.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
*Experimental* implementation of FlashAttention in Triton.
|
18 |
+
We use the FlashAttention implementation from Phil Tillet a starting point.
|
19 |
+
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
20 |
+
|
21 |
+
Changes:
|
22 |
+
- Implement both causal and non-causal attention.
|
23 |
+
- Implement both self-attention and cross-attention.
|
24 |
+
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
25 |
+
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
26 |
+
- Support attention bias.
|
27 |
+
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
28 |
+
- Make the backward for d=128 much faster by reducing register spilling.
|
29 |
+
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
30 |
+
small batch size * nheads.
|
31 |
+
|
32 |
+
Caution:
|
33 |
+
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
34 |
+
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
35 |
+
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
36 |
+
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
37 |
+
that there are none left for other head dimensions.
|
38 |
+
Differences between this Triton version and the CUDA version:
|
39 |
+
- Triton version doesn't support dropout.
|
40 |
+
- Triton forward is generally faster than CUDA forward.
|
41 |
+
- Triton backward is faster than CUDA backward when batch * nheads is small, and when headdim=64.
|
42 |
+
It is slightly slower when headdim=128 and batch * nheads is large.
|
43 |
+
- Triton version doesn't yet support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
44 |
+
"""
|
45 |
+
|
46 |
+
import math
|
47 |
+
|
48 |
+
import torch
|
49 |
+
import triton # type: ignore (reportMissingImports)
|
50 |
+
import triton.language as tl # type: ignore (reportMissingImports)
|
51 |
+
from einops import repeat
|
52 |
+
|
53 |
+
|
54 |
+
@triton.autotune(
|
55 |
+
configs=[
|
56 |
+
triton.Config({
|
57 |
+
'BLOCK_M': 128,
|
58 |
+
'BLOCK_N': 128
|
59 |
+
},
|
60 |
+
num_warps=8,
|
61 |
+
num_stages=1),
|
62 |
+
# This config has a race condition when EVEN_M == False, disabling it for now.
|
63 |
+
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
64 |
+
],
|
65 |
+
key=[
|
66 |
+
'CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL',
|
67 |
+
'BLOCK_HEADDIM'
|
68 |
+
])
|
69 |
+
@triton.heuristics({
|
70 |
+
'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
|
71 |
+
'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
|
72 |
+
'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
|
73 |
+
})
|
74 |
+
@triton.jit
|
75 |
+
def _fwd_kernel(
|
76 |
+
Q,
|
77 |
+
K,
|
78 |
+
V,
|
79 |
+
Bias,
|
80 |
+
Out,
|
81 |
+
Lse,
|
82 |
+
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
83 |
+
softmax_scale,
|
84 |
+
stride_qb,
|
85 |
+
stride_qh,
|
86 |
+
stride_qm,
|
87 |
+
stride_kb,
|
88 |
+
stride_kh,
|
89 |
+
stride_kn,
|
90 |
+
stride_vb,
|
91 |
+
stride_vh,
|
92 |
+
stride_vn,
|
93 |
+
stride_bb,
|
94 |
+
stride_bh,
|
95 |
+
stride_bm,
|
96 |
+
stride_ob,
|
97 |
+
stride_oh,
|
98 |
+
stride_om,
|
99 |
+
nheads,
|
100 |
+
seqlen_q,
|
101 |
+
seqlen_k,
|
102 |
+
seqlen_q_rounded,
|
103 |
+
headdim,
|
104 |
+
CACHE_KEY_SEQLEN_Q,
|
105 |
+
CACHE_KEY_SEQLEN_K,
|
106 |
+
BIAS_TYPE: tl.constexpr,
|
107 |
+
IS_CAUSAL: tl.constexpr,
|
108 |
+
BLOCK_HEADDIM: tl.constexpr,
|
109 |
+
EVEN_M: tl.constexpr,
|
110 |
+
EVEN_N: tl.constexpr,
|
111 |
+
EVEN_HEADDIM: tl.constexpr,
|
112 |
+
BLOCK_M: tl.constexpr,
|
113 |
+
BLOCK_N: tl.constexpr,
|
114 |
+
):
|
115 |
+
start_m = tl.program_id(0)
|
116 |
+
off_hb = tl.program_id(1)
|
117 |
+
off_b = off_hb // nheads
|
118 |
+
off_h = off_hb % nheads
|
119 |
+
# off_b = tl.program_id(1)
|
120 |
+
# off_h = tl.program_id(2)
|
121 |
+
# off_hb = off_b * nheads + off_h
|
122 |
+
# initialize offsets
|
123 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
124 |
+
offs_n = tl.arange(0, BLOCK_N)
|
125 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
126 |
+
# Initialize pointers to Q, K, V
|
127 |
+
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
128 |
+
# https://github.com/openai/triton/issues/741
|
129 |
+
# I'm seeing a tiny bit of difference (5-7us)
|
130 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (
|
131 |
+
offs_m[:, None] * stride_qm + offs_d[None, :])
|
132 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (
|
133 |
+
offs_n[:, None] * stride_kn + offs_d[None, :])
|
134 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (
|
135 |
+
offs_n[:, None] * stride_vn + offs_d[None, :])
|
136 |
+
if BIAS_TYPE == 'vector':
|
137 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
138 |
+
elif BIAS_TYPE == 'matrix':
|
139 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (
|
140 |
+
offs_m[:, None] * stride_bm + offs_n[None, :])
|
141 |
+
else:
|
142 |
+
raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
|
143 |
+
# initialize pointer to m and l
|
144 |
+
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
145 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
146 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
147 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
148 |
+
# load q: it will stay in SRAM throughout
|
149 |
+
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
150 |
+
# tl.load(q_ptrs), we get the wrong output!
|
151 |
+
if EVEN_M & EVEN_N:
|
152 |
+
if EVEN_HEADDIM:
|
153 |
+
q = tl.load(q_ptrs)
|
154 |
+
else:
|
155 |
+
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
156 |
+
else:
|
157 |
+
if EVEN_HEADDIM:
|
158 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
159 |
+
else:
|
160 |
+
q = tl.load(q_ptrs,
|
161 |
+
mask=(offs_m[:, None] < seqlen_q) &
|
162 |
+
(offs_d[None, :] < headdim),
|
163 |
+
other=0.0)
|
164 |
+
# loop over k, v and update accumulator
|
165 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
|
166 |
+
(start_m + 1) * BLOCK_M, seqlen_k)
|
167 |
+
for start_n in range(0, end_n, BLOCK_N):
|
168 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
169 |
+
# -- compute qk ----
|
170 |
+
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
171 |
+
if EVEN_HEADDIM:
|
172 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
173 |
+
else:
|
174 |
+
k = tl.load(k_ptrs + start_n * stride_kn,
|
175 |
+
mask=offs_d[None, :] < headdim,
|
176 |
+
other=0.0)
|
177 |
+
else:
|
178 |
+
if EVEN_HEADDIM:
|
179 |
+
k = tl.load(k_ptrs + start_n * stride_kn,
|
180 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
181 |
+
other=0.0)
|
182 |
+
else:
|
183 |
+
k = tl.load(k_ptrs + start_n * stride_kn,
|
184 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
185 |
+
(offs_d[None, :] < headdim),
|
186 |
+
other=0.0)
|
187 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
188 |
+
qk += tl.dot(q, k, trans_b=True)
|
189 |
+
# Trying to combine the two masks seem to make the result wrong
|
190 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
191 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
|
192 |
+
float('-inf'))
|
193 |
+
if IS_CAUSAL:
|
194 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
|
195 |
+
float('-inf'))
|
196 |
+
if BIAS_TYPE != 'none':
|
197 |
+
if BIAS_TYPE == 'vector':
|
198 |
+
if EVEN_N:
|
199 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
200 |
+
else:
|
201 |
+
bias = tl.load(b_ptrs + start_n,
|
202 |
+
mask=(start_n + offs_n) < seqlen_k,
|
203 |
+
other=0.0).to(tl.float32)
|
204 |
+
bias = bias[None, :]
|
205 |
+
elif BIAS_TYPE == 'matrix':
|
206 |
+
if EVEN_M & EVEN_N:
|
207 |
+
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
208 |
+
else:
|
209 |
+
bias = tl.load(b_ptrs + start_n,
|
210 |
+
mask=(offs_m[:, None] < seqlen_q) &
|
211 |
+
((start_n + offs_n)[None, :] < seqlen_k),
|
212 |
+
other=0.0).to(tl.float32)
|
213 |
+
else:
|
214 |
+
raise ValueError(
|
215 |
+
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
216 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
217 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
218 |
+
# to multiply with softmax_scale here.
|
219 |
+
qk = qk * softmax_scale + bias
|
220 |
+
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
221 |
+
p = tl.exp(qk - m_ij[:, None])
|
222 |
+
else:
|
223 |
+
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
224 |
+
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
225 |
+
l_ij = tl.sum(p, 1)
|
226 |
+
|
227 |
+
# scale acc_o
|
228 |
+
acc_o_scale = tl.exp(m_i - m_ij)
|
229 |
+
|
230 |
+
# # -- update output accumulator --
|
231 |
+
# BUG: have to store and immediately load
|
232 |
+
tl.store(t_ptrs, acc_o_scale)
|
233 |
+
acc_o_scale = tl.load(t_ptrs)
|
234 |
+
acc_o = acc_o * acc_o_scale[:, None]
|
235 |
+
# update acc_o
|
236 |
+
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
237 |
+
if EVEN_HEADDIM:
|
238 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
239 |
+
else:
|
240 |
+
v = tl.load(v_ptrs + start_n * stride_vn,
|
241 |
+
mask=offs_d[None, :] < headdim,
|
242 |
+
other=0.0)
|
243 |
+
else:
|
244 |
+
if EVEN_HEADDIM:
|
245 |
+
v = tl.load(v_ptrs + start_n * stride_vn,
|
246 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
247 |
+
other=0.0)
|
248 |
+
else:
|
249 |
+
v = tl.load(v_ptrs + start_n * stride_vn,
|
250 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
251 |
+
(offs_d[None, :] < headdim),
|
252 |
+
other=0.0)
|
253 |
+
p = p.to(v.dtype)
|
254 |
+
acc_o += tl.dot(p, v)
|
255 |
+
|
256 |
+
# -- update statistics
|
257 |
+
m_i = m_ij
|
258 |
+
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
259 |
+
lse_i = m_ij + tl.log(l_i_new)
|
260 |
+
|
261 |
+
o_scale = tl.exp(m_i - lse_i)
|
262 |
+
# BUG: have to store and immediately load
|
263 |
+
tl.store(t_ptrs, o_scale)
|
264 |
+
o_scale = tl.load(t_ptrs)
|
265 |
+
acc_o = acc_o * o_scale[:, None]
|
266 |
+
# rematerialize offsets to save registers
|
267 |
+
start_m = tl.program_id(0)
|
268 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
269 |
+
# write back l and m
|
270 |
+
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
271 |
+
tl.store(lse_ptrs, lse_i)
|
272 |
+
# initialize pointers to output
|
273 |
+
offs_n = tl.arange(0, BLOCK_HEADDIM)
|
274 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (
|
275 |
+
offs_m[:, None] * stride_om + offs_n[None, :])
|
276 |
+
if EVEN_M:
|
277 |
+
if EVEN_HEADDIM:
|
278 |
+
tl.store(out_ptrs, acc_o)
|
279 |
+
else:
|
280 |
+
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
281 |
+
else:
|
282 |
+
if EVEN_HEADDIM:
|
283 |
+
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
284 |
+
else:
|
285 |
+
tl.store(out_ptrs,
|
286 |
+
acc_o,
|
287 |
+
mask=(offs_m[:, None] < seqlen_q) &
|
288 |
+
(offs_d[None, :] < headdim))
|
289 |
+
|
290 |
+
def init_to_zero(name):
|
291 |
+
return lambda nargs: nargs[name].zero_()
|
292 |
+
|
293 |
+
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
294 |
+
# shape constraints
|
295 |
+
batch, seqlen_q, nheads, d = q.shape
|
296 |
+
_, seqlen_k, _, _ = k.shape
|
297 |
+
assert k.shape == (batch, seqlen_k, nheads, d)
|
298 |
+
assert v.shape == (batch, seqlen_k, nheads, d)
|
299 |
+
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
300 |
+
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
301 |
+
assert q.dtype in [torch.float16,
|
302 |
+
torch.bfloat16], 'Only support fp16 and bf16'
|
303 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
304 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
305 |
+
|
306 |
+
has_bias = bias is not None
|
307 |
+
bias_type = 'none'
|
308 |
+
if has_bias:
|
309 |
+
assert bias.dtype in [q.dtype, torch.float]
|
310 |
+
assert bias.is_cuda
|
311 |
+
assert bias.dim() == 4
|
312 |
+
if bias.stride(-1) != 1:
|
313 |
+
bias = bias.contiguous()
|
314 |
+
if bias.shape[2:] == (1, seqlen_k):
|
315 |
+
bias_type = 'vector'
|
316 |
+
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
317 |
+
bias_type = 'matrix'
|
318 |
+
else:
|
319 |
+
print(q.shape)
|
320 |
+
print(k.shape)
|
321 |
+
print(seqlen_q)
|
322 |
+
print(seqlen_k)
|
323 |
+
print(bias.shape)
|
324 |
+
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
325 |
+
' or (seqlen_q, seqlen_k)')
|
326 |
+
if bias.shape[:2] == (1, nheads):
|
327 |
+
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
328 |
+
elif bias.shape[:2] == (batch, 1):
|
329 |
+
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
330 |
+
elif bias.shape[:2] == (1, 1):
|
331 |
+
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
332 |
+
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
333 |
+
assert bias.shape[:2] == (
|
334 |
+
batch, nheads
|
335 |
+
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
336 |
+
assert bias is not None # for type checking
|
337 |
+
bias_strides = (bias.stride(0), bias.stride(1),
|
338 |
+
bias.stride(2)) if has_bias else (0, 0, 0)
|
339 |
+
|
340 |
+
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
341 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded),
|
342 |
+
device=q.device,
|
343 |
+
dtype=torch.float32)
|
344 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded),
|
345 |
+
device=q.device,
|
346 |
+
dtype=torch.float32)
|
347 |
+
o = torch.empty_like(q)
|
348 |
+
|
349 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
350 |
+
# BLOCK = 128
|
351 |
+
# num_warps = 4 if d <= 64 else 8
|
352 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
|
353 |
+
_fwd_kernel[grid]( # type: ignore
|
354 |
+
q,
|
355 |
+
k,
|
356 |
+
v,
|
357 |
+
bias,
|
358 |
+
o,
|
359 |
+
lse,
|
360 |
+
tmp,
|
361 |
+
softmax_scale,
|
362 |
+
q.stride(0),
|
363 |
+
q.stride(2),
|
364 |
+
q.stride(1),
|
365 |
+
k.stride(0),
|
366 |
+
k.stride(2),
|
367 |
+
k.stride(1),
|
368 |
+
v.stride(0),
|
369 |
+
v.stride(2),
|
370 |
+
v.stride(1),
|
371 |
+
*bias_strides,
|
372 |
+
o.stride(0),
|
373 |
+
o.stride(2),
|
374 |
+
o.stride(1),
|
375 |
+
nheads,
|
376 |
+
seqlen_q,
|
377 |
+
seqlen_k,
|
378 |
+
seqlen_q_rounded,
|
379 |
+
d,
|
380 |
+
seqlen_q // 32,
|
381 |
+
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
382 |
+
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
383 |
+
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
384 |
+
bias_type,
|
385 |
+
causal,
|
386 |
+
BLOCK_HEADDIM,
|
387 |
+
# BLOCK_M=BLOCK, BLOCK_N=BLOCK,
|
388 |
+
# num_warps=num_warps,
|
389 |
+
# num_stages=1,
|
390 |
+
)
|
391 |
+
return o, lse, softmax_scale # softmax_scale could have been updated
|
392 |
+
|
393 |
+
class _FlashAttnFunc(torch.autograd.Function):
|
394 |
+
|
395 |
+
@staticmethod
|
396 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
397 |
+
"""Forward pass for FlashAttention.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
ctx: autograd context
|
401 |
+
q: (batch_size, seqlen_q, nheads, headdim)
|
402 |
+
k: (batch_size, seqlen_k, nheads, headdim)
|
403 |
+
v: (batch_size, seqlen_k, nheads, headdim)
|
404 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
405 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
406 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
407 |
+
causal (bool): whether to incorporate causal attention masking
|
408 |
+
softmax_scale (float, optional): scale factor for softmax
|
409 |
+
"""
|
410 |
+
# Make sure that the last dimension is contiguous
|
411 |
+
q, k, v = [
|
412 |
+
x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
|
413 |
+
]
|
414 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
415 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
416 |
+
ctx.save_for_backward(q, k, v, o, lse, bias)
|
417 |
+
ctx.causal = causal
|
418 |
+
return o
|
419 |
+
|
420 |
+
@staticmethod
|
421 |
+
def backward(ctx, do):
|
422 |
+
raise NotImplementedError
|
423 |
+
|
424 |
+
flash_attn_func = _FlashAttnFunc.apply
|
modeling_bert.py
CHANGED
@@ -55,6 +55,7 @@ from transformers.utils import (
|
|
55 |
replace_return_docstrings,
|
56 |
)
|
57 |
from .configuration_bert import JinaBertConfig
|
|
|
58 |
|
59 |
try:
|
60 |
from tqdm.autonotebook import trange
|
@@ -333,6 +334,16 @@ class JinaBertSelfAttention(nn.Module):
|
|
333 |
output_attentions: Optional[bool] = False,
|
334 |
bias: Optional[torch.FloatTensor] = None,
|
335 |
) -> Tuple[torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
mixed_query_layer = self.query(hidden_states)
|
337 |
|
338 |
# If this is instantiated as a cross-attention module, the keys
|
|
|
55 |
replace_return_docstrings,
|
56 |
)
|
57 |
from .configuration_bert import JinaBertConfig
|
58 |
+
from .flash_attn_triton import flash_attn_func
|
59 |
|
60 |
try:
|
61 |
from tqdm.autonotebook import trange
|
|
|
334 |
output_attentions: Optional[bool] = False,
|
335 |
bias: Optional[torch.FloatTensor] = None,
|
336 |
) -> Tuple[torch.Tensor]:
|
337 |
+
if False:
|
338 |
+
b, s, h = hidden_states.shape
|
339 |
+
q = self.query(hidden_states)
|
340 |
+
k = self.key(hidden_states)
|
341 |
+
v = self.value(hidden_states)
|
342 |
+
q = self.transpose_for_scores(q)
|
343 |
+
k = self.transpose_for_scores(k)
|
344 |
+
v = self.transpose_for_scores(v)
|
345 |
+
attn = flash_attn_func(q, k, v, bias)
|
346 |
+
return (attn.view(b, s, h),)
|
347 |
mixed_query_layer = self.query(hidden_states)
|
348 |
|
349 |
# If this is instantiated as a cross-attention module, the keys
|