# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BERT model configuration""" from transformers import PretrainedConfig class JinaBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. window_size (`tuple`, *optional*, defaults to `(-1, -1)`): If not the default, use local attention """ model_type = "bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, window_size=(-1, -1), dense_seq_output=False, mlp_type='mlp', mlp_checkpoint_lvl=0, last_layer_subset=False, fused_dropout_add_ln=False, fused_bias_fc=False, pad_vocab_size_multiple=1, use_flash_attn=True, use_qk_norm=True, emb_pooler=None, classifier_dropout=None, num_loras=5, **kwargs, ): assert 'position_embedding_type' not in kwargs assert 'max_position_embeddings' not in kwargs super().__init__(pad_token_id=pad_token_id, **kwargs) if mlp_type == 'fused_mlp' and hidden_act not in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]: raise ValueError('Fused MLP only supports approximate gelu') self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.window_size = window_size self.dense_seq_output = dense_seq_output self.mlp_type= mlp_type self.mlp_checkpoint_lvl = mlp_checkpoint_lvl self.last_layer_subset = last_layer_subset self.fused_dropout_add_ln = fused_dropout_add_ln self.fused_bias_fc = fused_bias_fc self.pad_vocab_size_multiple = pad_vocab_size_multiple self.use_flash_attn = use_flash_attn self.use_qk_norm = use_qk_norm self.emb_pooler = emb_pooler self.classifier_dropout = classifier_dropout self.num_loras = num_loras