clean up embeddings.py (#7)
Browse files- clean up embeddings.py (6d5377580042f614ac525febd19c641c4d456d9b)
Co-authored-by: Bo Wang <[email protected]>
- embedding.py +0 -102
embedding.py
CHANGED
@@ -10,59 +10,6 @@ import torch.nn as nn
|
|
10 |
from torch import Tensor
|
11 |
|
12 |
|
13 |
-
class GPT2Embeddings(nn.Module):
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
embed_dim,
|
17 |
-
vocab_size,
|
18 |
-
max_position_embeddings,
|
19 |
-
padding_idx=None,
|
20 |
-
word_embed_proj_dim=None,
|
21 |
-
device=None,
|
22 |
-
dtype=None,
|
23 |
-
):
|
24 |
-
"""
|
25 |
-
If max_position_embeddings <= 0, there's no position embeddings
|
26 |
-
If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension
|
27 |
-
the project up to embed_dim
|
28 |
-
"""
|
29 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
30 |
-
super().__init__()
|
31 |
-
if word_embed_proj_dim is None:
|
32 |
-
self.word_embeddings = nn.Embedding(
|
33 |
-
vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
|
34 |
-
)
|
35 |
-
self.project_in = None
|
36 |
-
else:
|
37 |
-
self.word_embeddings = nn.Embedding(
|
38 |
-
vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs
|
39 |
-
)
|
40 |
-
self.project_in = nn.Linear(
|
41 |
-
word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs
|
42 |
-
)
|
43 |
-
self.max_position_embeddings = max_position_embeddings
|
44 |
-
if self.max_position_embeddings > 0:
|
45 |
-
self.position_embeddings = nn.Embedding(
|
46 |
-
max_position_embeddings, embed_dim, **factory_kwargs
|
47 |
-
)
|
48 |
-
|
49 |
-
def forward(self, input_ids, position_ids=None):
|
50 |
-
"""
|
51 |
-
input_ids: (batch, seqlen)
|
52 |
-
position_ids: (batch, seqlen)
|
53 |
-
"""
|
54 |
-
batch_size, seqlen = input_ids.shape
|
55 |
-
embeddings = self.word_embeddings(input_ids)
|
56 |
-
if self.project_in is not None:
|
57 |
-
embeddings = self.project_in(embeddings)
|
58 |
-
if self.max_position_embeddings > 0:
|
59 |
-
if position_ids is None:
|
60 |
-
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
61 |
-
position_embeddings = self.position_embeddings(position_ids)
|
62 |
-
embeddings = embeddings + position_embeddings
|
63 |
-
return embeddings
|
64 |
-
|
65 |
-
|
66 |
class BertEmbeddings(nn.Module):
|
67 |
def __init__(
|
68 |
self,
|
@@ -111,52 +58,3 @@ class BertEmbeddings(nn.Module):
|
|
111 |
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
112 |
embeddings = embeddings + token_type_embeddings
|
113 |
return embeddings
|
114 |
-
|
115 |
-
|
116 |
-
class VocabParallelEmbedding(nn.Embedding):
|
117 |
-
def __init__(self, num_embeddings, *args, process_group=None, padding_idx=None, **kwargs):
|
118 |
-
self.process_group = process_group
|
119 |
-
if process_group is not None:
|
120 |
-
world_size = torch.distributed.get_world_size(process_group)
|
121 |
-
if num_embeddings % world_size != 0:
|
122 |
-
raise ValueError(
|
123 |
-
f"num_embeddings ({num_embeddings}) must be divisible by "
|
124 |
-
f"world_size ({world_size})"
|
125 |
-
)
|
126 |
-
if world_size > 1 and padding_idx is not None:
|
127 |
-
raise RuntimeError("ParallelEmbedding does not support padding_idx")
|
128 |
-
else:
|
129 |
-
world_size = 1
|
130 |
-
super().__init__(num_embeddings // world_size, *args, padding_idx=padding_idx, **kwargs)
|
131 |
-
|
132 |
-
def forward(self, input: Tensor) -> Tensor:
|
133 |
-
if self.process_group is None:
|
134 |
-
return super().forward(input)
|
135 |
-
else:
|
136 |
-
rank = torch.distributed.get_rank(self.process_group)
|
137 |
-
vocab_size = self.num_embeddings
|
138 |
-
vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size
|
139 |
-
# Create a mask of valid vocab ids (1 means it needs to be masked).
|
140 |
-
input_ids_mask = (input < vocab_start_index) | (input >= vocab_end_index)
|
141 |
-
input = input - vocab_start_index
|
142 |
-
input[input_ids_mask] = 0
|
143 |
-
embeddings = super().forward(input)
|
144 |
-
embeddings[input_ids_mask] = 0.0
|
145 |
-
return embeddings
|
146 |
-
|
147 |
-
|
148 |
-
class ColumnParallelEmbedding(nn.Embedding):
|
149 |
-
def __init__(self, num_embeddings, embedding_dim, *args, process_group=None, **kwargs):
|
150 |
-
self.process_group = process_group
|
151 |
-
if process_group is not None:
|
152 |
-
world_size = torch.distributed.get_world_size(process_group)
|
153 |
-
if embedding_dim % world_size != 0:
|
154 |
-
raise ValueError(
|
155 |
-
f"embedding_dim ({embedding_dim}) must be divisible by "
|
156 |
-
f"world_size ({world_size})"
|
157 |
-
)
|
158 |
-
else:
|
159 |
-
world_size = 1
|
160 |
-
super().__init__(num_embeddings, embedding_dim // world_size, *args, **kwargs)
|
161 |
-
|
162 |
-
|
|
|
10 |
from torch import Tensor
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class BertEmbeddings(nn.Module):
|
14 |
def __init__(
|
15 |
self,
|
|
|
58 |
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
59 |
embeddings = embeddings + token_type_embeddings
|
60 |
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|